State of the Art Technologies in Parkinson's Disease Management: A Review Article
Abstract
Parkinson's Disease (PD) is a neurodegenerative disorder that causes movement and behavioral problems. Pharmacological advancements for preventing disease progression have limited success for many PD patients; therefore, supportive care is necessary. The advancement of the digital world and the revolution of computerized applications pave the way for a better understanding of PD and inventing technological apparatus for helping PD patients to provide them a more normal life. In this review, the most recent technological advancements regarding the rehabilitation, monitoring, and early prognosis of PD are presented. Furthermore, the possible neurological mechanisms responsible for the positive effects of technological-based interventions are discussed.
2. Thanvi BR, Lo TC. Long term motor complications of levodopa: Clinical features, mechanisms, and management strategies. Postgraduate Medical Journal. 2004; 80(946):452-8. [DOI:10.1136/pgmj.2003.013912] [PMID] [PMCID]
3. Groiss SJ, Wojtecki L, Südmeyer M, Schnitzler A. Deep brain stimulation in Parkinson’s disease. Therapeutic Advances in Neurological Disorders. 2009; 2(6):20-8. [DOI:10.1177/1756285609339382] [PMID] [PMCID]
4. Hartmann CJ, Fliegen S, Groiss SJ, Wojtecki L, Schnitzler A. An update on best practice of deep brain stimulation in Parkinson’s disease. Therapeutic Advances in Neurological Disorders. 2019; 12:1756286419838096. [DOI:10.1177/1756286419838096] [PMID] [PMCID]
5. Dayal V, Grover T, Limousin P, Akram H, Cappon D, Candelario J, et al. The effect of short pulse width settings on the therapeutic window in subthalamic nucleus deep brain stimulation for Parkinson’s disease. Journal of Parkinson’s Disease. 2018; 8(2):273-9. [DOI:10.3233/JPD-171272] [PMID]
6. Wojtecki L, Vesper J, Schnitzler A. Interleaving programming of subthalamic deep brain stimulation to reduce side effects with good motor outcome in a patient with Parkinson’s disease. Parkinsonism & Related Disorders. 2011; 17(4):293-4. [DOI:10.1016/j.parkreldis.2010.12.005] [PMID]
7. Okun MS, Gallo BV, Mandybur G, Jagid J, Foote KD, Revilla FJ, et al. Subthalamic deep brain stimulation with a constant-current device in Parkinson’s disease: An open-label randomised controlled trial. The Lancet Neurology. 2012; 11(2):140-9. [DOI:10.1016/S1474-4422(11)70308-8]
8. Deeb W, Patel A, Okun MS, Gunduz A. Management of elevated therapeutic impedances on deep brain stimulation leads. Tremor and Other Hyperkinetic Movements. 2017; 7. [DOI:10.7916/D8BR94MV]
9. Lempka SF, Johnson MD, Miocinovic S, Vitek JL, McIntyre CC. Current-controlled deep brain stimulation reduces in vivo voltage fluctuations observed during voltage-controlled stimulation. Clinical Neurophysiology. 2010; 121(12):2128-33. [DOI:10.1016/j.clinph.2010.04.026] [PMID] [PMCID]
10. Steigerwald F, Timmermann L, Kühn A, Schnitzler A, Reich MM, Kirsch AD, et al. Pulse duration settings in subthalamic stimulation for Parkinson’s disease. Movement Disorders. 2018; 33(1):165-9. [DOI:10.1002/mds.27238] [PMID] [PMCID]
11. VanSickle D, Volk V, Freeman P, Henry J, Baldwin M, Fitzpatrick CK. Electrode placement accuracy in robot-assisted asleep deep brain stimulation. Annals of Biomedical Engineering. 2019; 47(5):1212-22. [DOI:10.1007/s10439-019-02230-3] [PMID]
12. Iacono MI, Atefi SR, Mainardi L, Walker HC, Angelone LM, Bonmassar G. A Study on the feasibility of the Deep Brain Stimulation (DBS) electrode localization based on scalp electric potential recordings. Frontiers in Physiology. 2019; 9:1788. [DOI:10.3389/fphys.2018.01788] [PMID] [PMCID]
13. Smith B, Miranda C. Deep brain stimulation electrode with photoacoustic and ultrasound imaging capabilities. United States patent application US 16/357,074. 2019. https://patents.google.com/patent/US20190282069A1/en
14. Yoshikazu U. TMS treatment of Parkinson’s disease. Journal of The Neurological Sciences. 2017; 381(S1):40. [DOI:10.1016/j.jns.2017.08.167]
15. Chou YH, Hickey PT, Sundman M, Song AW, Chen NK. Effects of repetitive transcranial magnetic stimulation on motor symptoms in Parkinson disease: A systematic review and meta-analysis. JAMA Neurology. 2015; 72(4):432-40. [DOI:10.1001/jamaneurol.2014.4380] [PMID] [PMCID]
16. Fricke C, Duesmann C, Woost TB, von Hofen-Hohloch J, Rumpf JJ, Weise D, et al. Dual-site transcranial magnetic stimulation for the treatment of Parkinson’s disease. Frontiers in Neurology. 2019; 10:174. [DOI:10.3389/fneur.2019.00174] [PMID] [PMCID]
17. Hai-Jiao W, Ge T, Li-Na Z, Deng C, Da X, Shan-Shan C, et al. The efficacy of repetitive transcranial magnetic stimulation for Parkinson disease patients with depression. The International Journal of Neuroscience. 2020; 130(1):19-27. [PMID]
18. Kaski D, Dominguez RO, Allum JH, Islam AF, Bronstein AM. Combining physical training with transcranial direct current stimulation to improve gait in Parkinson’s disease: A pilot randomized controlled study. Clinical Rehabilitation. 2014; 28(11):1115-24. [DOI:10.1177/0269215514534277] [PMID]
19. Fregni F, Boggio PS, Santos MC, Lima M, Vieira AL, Rigonatti SP, et al. Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson’s disease. Movement Disorders: Official Journal of The Movement Disorder Society. 2006; 21(10):1693-702. [DOI:10.1002/mds.21012] [PMID]
20. Murphy TH, Corbett D. Plasticity during stroke recovery: From synapse to behavior. Nature Reviews. Neuroscience. 2009; 10(12):861-72. [DOI:10.1038/nrn2735] [PMID]
21. Márquez-Ruiz J, Leal-Campanario R, Sánchez-Campusano R, Molaee-Ardekani B, Wendling F, Miranda PC, et al. Transcranial direct-current stimulation modulates synaptic mechanisms involved in associative learning in behaving rabbits. Proceedings of the National Academy of Sciences of the United States of America. 2012; 109(17):6710-5. [DOI:10.1073/pnas.1121147109] [PMID] [PMCID]
22. Fritsch B, Reis J, Martinowich K, Schambra HM, Ji Y, Cohen LG, et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: Potential implications for motor learning. Neuron. 2010; 66(2):198-204. [DOI:10.1016/j.neuron.2010.03.035] [PMID] [PMCID]
23. Moosa S, Martínez-Fernández R, Elias WJ, Del Alamo M, Eisenberg HM, Fishman PS. The role of high-intensity focused ultrasound as a symptomatic treatment for Parkinson’s disease. Movement Disorders: Official Journal of the Movement Disorder Society. 2019; 34(9):1243-51. [DOI:10.1002/mds.27779] [PMID]
24. Gallay MN, Moser D, Jeanmonod D. MR-guided focused ultrasound cerebellothalamic tractotomy for chronic therapy-resistant essential tremor: Anatomical target reappraisal and clinical results. Journal of Neurosurgery. 2020; 1-10. [PMID]
25. Ma HI, Hwang WJ, Tsai PL, Hsu YW. The effect of eating utensil weight on functional arm movement in people with Parkinson’s disease: A controlled clinical trial. Clinical Rehabilitation. 2009; 23(12):1086-92. [DOI:10.1177/0269215509342334] [PMID]
26. Pathak A, Redmond JA, Allen M, Chou KL. A noninvasive handheld assistive device to accommodate essential tremor: A pilot study. Movement Disorders: official journal of the Movement Disorder Society. 2014; 29(6):838-42. [DOI:10.1002/mds.25796] [PMID] [PMCID]
27. Fraiwan L, Amir S, Ahmed F, Halepota J. Design of a stabilisation platform for Parkinson’s disease patient. Journal of Medical Engineering & Technology. 2018; 42(1):43-51. [PMID]
28. Barz S, Hummel T, Pauli E, Majer M, Lang CJ, Kobal G. Chemosensory event-related potentials in response to trigeminal and olfactory stimulation in idiopathic Parkinson’s disease. Neurology. 1997; 49(5):1424-31. [DOI:10.1212/WNL.49.5.1424] [PMID]
29. Helmich RC, Hallett M, Deuschl G, Toni I, Bloem BR. Cerebral causes and consequences of parkinsonian resting tremor: A tale of two circuits? Brain. 2012; 135(Pt 11):3206-26. [DOI:10.1093/brain/aws023] [PMID] [PMCID]
30. Bhatia KP, Bain P, Bajaj N, Elble RJ, Hallett M, Louis ED, et al. Consensus statement on the classification of tremors. From the task force on tremor of the International Parkinson and Movement Disorder Society. Movement Disorders: Official Journal of The Movement Disorder Society. 2018; 33(1):75-87. [DOI:10.1002/mds.27121] [PMID] [PMCID]
31. Hashemi SM, Golnaraghi MF, Patla AE. Tuned vibration absorber for suppression of rest tremor in Parkinson’s disease. Medical & Biological Engineering & Computing. 2004; 42(1):61-70. [DOI:10.1007/BF02351012] [PMID]
32. Loureiro RCV, Belda-Lois JM, Lima ER, Pons JL, Sanchez-Lacuesta JJ, Harwin WS. Upper limb tremor suppression in ADL via an orthosis incorporating a controllable double viscous beam actuator. Paper presented at: 9th International Conference on Rehabilitation Robotics. 28 June-1 July 2005; Chicago, USA. [DOI:10.1109/ICORR.2005.1501065]
33. Case D, Taheri B, Richer E. Design and characterization of a small-scale magnetorheological damper for tremor suppression. IEEE ASME Trans Mechatron. 2011; 18(1):96-103. [DOI:10.1109/TMECH.2011.2151204]
34. Zhou Y, Naish MD, Jenkins ME, Trejos AL. Design and validation of a novel mechatronic transmission system for a wearable tremor suppression device. Robotics and Autonomous Systems. 2017; 91:38-48. [DOI:10.1016/j.robot.2016.12.009]
35. Gyrogear. GyroGlove stabilising life [Internet]. 2017 [Updated 2017]. Available from: https://gyrogear.co/gyroglove
36. Dosen S, Muceli S, Dideriksen JL, Romero JP, Rocon E, Pons J, et al. Online tremor suppression using electromyography and low-level electrical stimulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering : A Publication of The IEEE Engineering in Medicine and Biology Society. 2015; 23(3):385-95. [DOI:10.1109/TNSRE.2014.2328296] [PMID]
37. Dideriksen JL, Laine CM, Dosen S, Muceli S, Rocon E, Pons JL, et al. Electrical stimulation of afferent pathways for the suppression of pathological tremor. Frontiers in Neuroscience. 2017; 11:178. [DOI:10.3389/fnins.2017.00178] [PMID] [PMCID]
38. McIntosh GC, Brown SH, Rice RR, Thaut MH. Rhythmic auditory-motor facilitation of gait patterns in patients with Parkinson’s disease. Journal of Neurology, Neurosurgery, and Psychiatry. 1997; 62(1):22-6. [DOI:10.1136/jnnp.62.1.22] [PMID] [PMCID]
39. Jiang Y, Norman KE. Effects of visual and auditory cues on gait initiation in people with Parkinson's disease. Clinical Rehabilitation. 2006; 20(1):36-45. [DOI:10.1191/0269215506cr925oa]
40. Willems AM, Nieuwboer A, Chavret F, Desloovere K, Dom R, Rochester L, et al. The use of rhythmic auditory cues to influence gait in patients with Parkinson’s disease, the differential effect for freezers and non-freezers, an explorative study. Disability and Rehabilitation. 2006; 28(11):721-8. [PMID]
41. Herholz SC, Zatorre RJ. Musical training as a framework for brain plasticity: Behavior, function, and structure. Neuron. 2012; 76(3):486-502. [DOI:10.1016/j.neuron.2012.10.011] [PMID]
42. Stathopoulos ET, Huber JE, Richardson K, Kamphaus J, DeCicco D, Darling M, et al. Increased vocal intensity due to the Lombard effect in speakers with Parkinson’s disease: Simultaneous laryngeal and respiratory strategies. Journal of Communication Disorders. 2014; 48:1-17. [DOI:10.1016/j.jcomdis.2013.12.001] [PMID] [PMCID]
43. Tomlinson CL, Patel S, Meek C, Herd CP, Clarke CE, Stowe R, et al. Physiotherapy versus placebo or no intervention in Parkinson’s disease. The Cochrane Database of Systematic Reviews. 2013; 2013(9):CD002817. [DOI:10.1002/14651858.CD002817.pub4] [PMID] [PMCID]
44. Petzinger GM, Holschneider DP, Fisher BE, McEwen S, Kintz N, Halliday M, et al. The effects of exercise on dopamine neurotransmission in parkinson’s disease: Targeting neuroplasticity to modulate basal ganglia circuitry. Brain Plasticity. 2015; 1(1):29-39. [DOI:10.3233/BPL-150021] [PMID] [PMCID]
45. Fisher BE, Petzinger GM, Nixon K, Hogg E, Bremmer S, Meshul CK, et al. Exercise-induced behavioral recovery and neuroplasticity in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse basal ganglia. Journal of Neuroscience Research. 2004; 77(3):378-90. [DOI:10.1002/jnr.20162] [PMID]
46. Gerecke KM, Jiao Y, Pani A, Pagala V, Smeyne RJ. Exercise protects against MPTP-induced neurotoxicity in mice. Brain Research. 2010; 1341:72-83. [DOI:10.1016/j.brainres.2010.01.053] [PMID] [PMCID]
47. Wu SY, Wang TF, Yu L, Jen CJ, Chuang JI, Wu FS, et al. Running exercise protects the substantia nigra dopaminergic neurons against inflammation-induced degeneration via the activation of BDNF signaling pathway. Brain, Behavior, and Immunity. 2011; 25(1):135-46. [DOI:10.1016/j.bbi.2010.09.006] [PMID]
48. Fang JY. Update on the medical management of Parkinson disease. Continuum. 2010; 16(1 Movement Disorders):96-109. [DOI:10.1212/01.CON.0000348902.87091.ad] [PMID]
49. Sciolino NR, Holmes PV. Exercise offers anxiolytic potential: A role for stress and brain noradrenergic-galaninergic mechanisms. Neuroscience and Biobehavioral Reviews. 2012; 36(9):1965-84. [DOI:10.1016/j.neubiorev.2012.06.005] [PMID] [PMCID]
50. Pieribone VA, Xu ZQ, Zhang X, Grillner S, Bartfai T, Hökfelt T. Galanin induces a hyperpolarization of norepinephrine-containing locus coeruleus neurons in the brainstem slice. Neuroscience. 1995; 64(4):861-74. [DOI:10.1016/0306-4522(94)00450-J]
51. O’Neal HA, Van Hoomissen JD, Holmes PV, Dishman RK. Prepro-galanin messenger RNA levels are increased in rat locus coeruleus after treadmill exercise training. Neuroscience Letters. 2001; 299(1-2):69-72. [DOI:10.1016/S0304-3940(00)01780-8]
52. Lin TW, Kuo YM. Exercise benefits brain function: The monoamine connection. Brain Sciences. 2013; 3(1):39-53. [DOI:10.3390/brainsci3010039] [PMID] [PMCID]
53. Assad O, Hermann R, Lilla D, Mellies B, Meyer R, Shevach L, et al. Motion-based games for Parkinson’s disease patients. In: Anacleto JC, Fels S, Graham N, Kapralos B, Saif El-Nasr M, Stanley K, editors. Entertainment Computing – ICEC. Berlin: Springer; 2011. [DOI:10.1007/978-3-642-24500-8_6]
54. van der Meulen E, Cidota MA, Lukosch SG, Bank PJ, van der Helm AJ, Visch VT. A haptic serious augmented reality game for motor assessment of parkinson’s disease patients. Paper presented at: International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct). 19-23 September 2016; Merida, Mexico. [DOI:10.1109/ISMAR-Adjunct.2016.0050]
55. Lee KH. Effects of a virtual reality-based exercise program on functional recovery in stroke patients: Part 1. Journal of Physical Therapy Science. 2015; 27(6):1637-40. [DOI:10.1589/jpts.27.1637] [PMID] [PMCID]
56. Yen CY, Lin KH, Hu MH, Wu RM, Lu TW, Lin CH. Effects of virtual reality-augmented balance training on sensory organization and attentional demand for postural control in people with Parkinson disease: A randomized controlled trial. Physical Therapy. 2011; 91(6):862-74. [DOI:10.2522/ptj.20100050] [PMID]
57. Bank PJ, Cidota MA, Ouwehand PEW, Lukosch SG. Patient-tailored augmented reality games for assessing upper extremity motor impairments in Parkinson’s disease and stroke. Journal of Medical Systems. 2018; 42(12):246. [DOI:10.1007/s10916-018-1100-9] [PMID] [PMCID]
58. Alankus G, Lazar A, May M, Kelleher C. Towards customizable games for stroke rehabilitation. In Proceedings of the SIGCHI conference on human factors in computing systems. 2010 Apr 10 (pp. 2113-2122) [Online Publication]. https://dl.acm.org/doi/abs/10.1145/1753326.1753649
59. Burke JW, McNeill M, Charles DK, Morrow PJ, Crosbie JH, McDonough SM. Optimising engagement for stroke rehabilitation using serious games. The Visual Computer. 2009; 25(12):1085. [DOI:10.1007/s00371-009-0387-4]
60. Possin KL. Visual spatial cognition in neurodegenerative disease. Neurocase. 2010; 16(6):466-87. [PMID] [PMCID]
61. Darewych OH, Carlton NR, Farrugie KW. Digital technology use in art therapy with adults with developmental disabilities. Journal on Developmental Disabilities. 2015; 21(2):95-102. https://oadd.org/wp-content/uploads/2015/01/41021_JoDD_21-2_v23f_95-102_Darewych_et_al.pdf
62. Mariani B, Hoskovec C, Rochat S, Büla C, Penders J, Aminian K. 3D gait assessment in young and elderly subjects using foot-worn inertial sensors. Journal of Biomechanics. 2010; 43(15):2999-3006. [DOI:10.1016/j.jbiomech.2010.07.003] [PMID]
63. Tao W, Liu T, Zheng R, Feng H. Gait analysis using wearable sensors. Sensors. 2012; 12(2):2255-83. [DOI:10.3390/s120202255] [PMID] [PMCID]
64. Zhang X, Ding M, Fan G. Video-based human walking estimation using joint gait and pose manifolds. Transactions on Circuits and Systems for Video Technology. 2017; 27(7):1540-54. [DOI:10.1109/TCSVT.2016.2527218]
65. Morphett AL, Crawford CM, Lee D. The use of electromagnetic tracking technology for measurement of passive cervical range of motion: A pilot study. Journal of Manipulative and Physiological Therapeutics. 2003; 26(3):152-9. [DOI:10.1016/S0161-4754(02)54107-5]
66. Singh RE, Iqbal K, White G, Holtz JK. A review of EMG techniques for detection of gait disorders. In: Aceves-Fernandez MA, editor. Artificial intelligence applications in medicine and biology. London: IntechOpen; 2019. https://www.google.com/books/edition/Artificial_Intelligence/MkP8DwAAQBAJ?hl=en&gbpv=0
67. Patel S, Chen BR, Buckley T, Rednic R, McClure D, Tarsy D, et al. Home monitoring of patients with Parkinson’s disease via wearable technology and a web-based application. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference. 2010; 2010:4411-4. [DOI:10.1109/IEMBS.2010.5627124] [PMID]
68. Bae J, Kong K, Byl N, Tomizuka M. A mobile gait monitoring system for abnormal gait diagnosis and rehabilitation: A pilot study for Parkinson disease patients. Journal of Biomechanical Engineering. 2011; 133(4):041005. [DOI:10.1115/1.4003525] [PMID]
69. Farashi S. Distinguishing between Parkinson’s disease patients and healthy individuals using a comprehensive set of time, frequency and time-frequency features extracted from vertical ground reaction force data. Biomedical Signal Processing and Control. 2020; 62:102132. [DOI:10.1016/j.bspc.2020.102132]
70. Almogren A. An automated and intelligent Parkinson disease monitoring system using wearable computing and cloud technology. Cluster Computing. 2019; 22(1):2309-16. [DOI:10.1007/s10586-017-1591-z]
71. Ahlrichs C, Samà A, Lawo M, Cabestany J, Rodríguez-Martín D, Pérez-López C, et al. Detecting freezing of gait with a tri-axial accelerometer in Parkinson’s disease patients. Medical & Biological Engineering & Computing. 2016; 54(1):223-33. [DOI:10.1007/s11517-015-1395-3] [PMID]
72. Mathie MJ, Basilakis J, Celler BG. A system for monitoring posture and physical activity using accelerometers. Paper presented at: Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 25-28 October 2001; Istanbul, Turkey. [DOI: 10.1109/IEMBS.2001.1019627]
73. Borzì L, Varrecchia M, Olmo G, Artusi CA, Fabbri M, Rizzone MG, et al. Home monitoring of motor fluctuations in Parkinson’s disease patients. Journal of Reliable Intelligent Environments. 2019; 5(3):145-62. [DOI:10.1007/s40860-019-00086-x]
74. Knobl P, Kielstra L, Almeida Q. The relationship between motor planning and freezing of gait in Parkinson’s disease. Journal of Neurology, Neurosurgery, and Psychiatry. 2012; 83(1):98-101. [DOI:10.1136/jnnp-2011-300869] [PMID]
75. San-Segundo R, Navarro-Hellín H, Torres-Sánchez R, Hodgins J, De la Torre F. Increasing robustness in the detection of freezing of gait in Parkinson’s disease. Electronics. 2019; 8(2):119. [DOI:10.3390/electronics8020119]
76. Orphanidou NK, Hussain A, Keight R, Lishoa P, Hind J, Al-Askar H. Predicting freezing of gait in Parkinsons disease patients using machine learning. Paper presented at: EEE Congress on Evolutionary Computation (CEC). 8-13 July 2018; Rio de Janeiro, Brazil. [DOI:10.1109/CEC.2018.8477909]
77. Rodríguez-Molinero A, Pérez-López C, Samà A, de Mingo E, Rodríguez-Martín D, Hernández-Vara J, et al. A kinematic sensor and algorithm to detect motor fluctuations in parkinson disease: Validation study under real conditions of use. JMIR Rehabilitation and Assistive Technologies. 2018; 5(1):e8. [DOI:10.2196/rehab.8335] [PMID] [PMCID]
78. Suttrup I, Suttrup J, Suntrup-Krueger S, Siemer ML, Bauer J, Hamacher C, et al. Esophageal dysfunction in different stages of Parkinson’s disease. Neurogastroenterology and Motility. 2017; 29(1):e12915. [DOI:10.1111/nmo.12915] [PMID]
79. Klingelhoefer L, Jitkritsadakul O, Bhidayasiri R. Objective measurement and monitoring of nonmotor symptoms in Parkinson’s disease. International Review of Neurobiology. 2017; 133:347-87. [DOI:10.1016/bs.irn.2017.04.004] [PMID]
80. Bhidayasiri R, Sringean J, Thanawattano C. Sensor-based evaluation and treatment of nocturnal hypokinesia in Parkinson’s disease: An evidence-based review. Parkinsonism & Related Disorders. 2016; 22(Suppl 1):S127-33. [DOI:10.1016/j.parkreldis.2015.09.049] [PMID]
81. Kang JH, Irwin DJ, Chen-Plotkin AS, Siderowf A, Caspell C, Coffey CS, et al. Association of cerebrospinal fluid β-amyloid 1-42, T-tau, P-tau181, and α-synuclein levels with clinical features of drug-naive patients with early Parkinson disease. JAMA Neurology. 2013; 70(10):1277-87. [DOI:10.1001/jamaneurol.2013.3861] [PMID] [PMCID]
82. Tinsley RB, Kotschet K, Modesto D, Ng H, Wang Y, Nagley P, et al. Sensitive and specific detection of α-synuclein in human plasma. Journal of Neuroscience Research. 2010; 88(12):2693-700. [DOI:10.1002/jnr.22417] [PMID]
83. Htike TT, Mishra S, Kumar S, Padmanabhan P, Gulyás B. Peripheral biomarkers for early detection of Alzheimer’s and Parkinson’s diseases. Molecular Neurobiology. 2019; 56(3):2256-77. [DOI:10.1007/s12035-018-1151-4] [PMID]
84. You X, Gopinath SCB, Lakshmipriya T, Li D. High-affinity detection of Alpha-synuclein by aptamer-gold conjugates on an amine-modified dielectric surface. Journal of Analytical Methods in Chemistry. 2019; 2019:6526850. [DOI:10.1155/2019/6526850] [PMID] [PMCID]
85. Hong Z, Shi M, Chung KA, Quinn JF, Peskind ER, Galasko D, et al. DJ-1 and alpha-synuclein in human cerebrospinal fluid as biomarkers of Parkinson’s disease. Brain. 2010; 133(Pt 3):713-26. [DOI:10.1093/brain/awq008] [PMID] [PMCID]
86. Constantinescu R, Zetterberg H. Urate as a marker of development and progression in Parkinson’s disease. Drugs of Today. 2011; 47(5):369-80. [DOI:10.1358/dot.2011.47.5.1591834] [PMID]
87. Yin GN, Lee HW, Cho JY, Suk K. Neuronal pentraxin receptor in cerebrospinal fluid as a potential biomarker for neurodegenerative diseases. Brain Research. 2009; 1265:158-70. [DOI:10.1016/j.brainres.2009.01.058] [PMID]
88. Doty RL, Deems DA, Stellar S. Olfactory dysfunction in parkinsonism: A general deficit unrelated to neurologic signs, disease stage, or disease duration. Neurology. 1988; 38(8):1237-44. [DOI:10.1212/WNL.38.8.1237] [PMID]
89. Sobhani S, Rahmani F, Aarabi MH, Sadr AV. Exploring white matter microstructure and olfaction dysfunction in early parkinson disease: Diffusion MRI reveals new insight. Brain Imaging and Behavior. 2019; 13(1):210-9. [DOI:10.1007/s11682-017-9781-0] [PMID]
90. Georgiopoulos C, Witt ST, Haller S, Dizdar N, Zachrisson H, Engström M, et al. A study of neural activity and functional connectivity within the olfactory brain network in Parkinson’s disease. NeuroImage. Clinical. 2019; 23:101946. [DOI:10.1016/j.nicl.2019.101946] [PMID] [PMCID]
91. Adams WR. High-accuracy detection of early Parkinson’s Disease using multiple characteristics of finger movement while typing. PLoS One. 2017; 12(11):e0188226. [DOI:10.1371/journal.pone.0188226] [PMID] [PMCID]
92. Iakovakis D, Hadjidimitriou S, Charisis V, Bostantzopoulou S, Katsarou Z, Hadjileontiadis LJ. Touchscreen typing-pattern analysis for detecting fine motor skills decline in early-stage Parkinson’s disease. Scientific Reports. 2018; 8(1):7663. [DOI:10.1038/s41598-018-25999-0] [PMID] [PMCID]
93. Farashi S. Analysis of vertical eye movements in Parkinson’s disease and its potential for diagnosis. Applied Intelligence. 2021; 51:8260–70. [DOI:10.1007/s10489-021-02364-9]
94. Hikosaka O, Takikawa Y, Kawagoe R. Role of the basal ganglia in the control of purposive saccadic eye movements. Physiological Reviews. 2000; 80(3):953-78. [DOI:10.1152/physrev.2000.80.3.953] [PMID]
95. Terao Y, Fukuda H, Yugeta A, Hikosaka O, Nomura Y, Segawa M, et al. Initiation and inhibitory control of saccades with the progression of Parkinson’s disease-changes in three major drives converging on the superior colliculus. Neuropsychologia. 2011; 49(7):1794-806. [DOI:10.1016/j.neuropsychologia.2011.03.002] [PMID]
96. Railo H, Olkoniemi H, Eeronheimo E, Pääkkönen O, Joutsa J, Kaasinen V. Dopamine and eye movement control in Parkinson’s disease: Deficits in corollary discharge signals? PeerJ. 2018; 6:e6038. [DOI:10.7717/peerj.6038] [PMID] [PMCID]
97. 97Geraedts VJ, Boon LI, Marinus J, Gouw AA, van Hilten JJ, Stam CJ, et al. Clinical correlates of quantitative EEG in Parkinson disease: A systematic review. Neurology. 2018; 91(19):871-83. [DOI:10.1212/WNL.0000000000006473] [PMID]
98. Caviness JN, Beach TG, Hentz JG, Shill HA, Driver-Dunckley ED, Adler CH. Association between pathology and electroencephalographic activity in Parkinson’s disease. Clinical EEG and Neuroscience. 2018; 49(5):321-7. [DOI:10.1177/1550059417696179] [PMID]
99. Jackson N, Cole SR, Voytek B, Swann NC. Characteristics of waveform shape in Parkinson’s disease detected with scalp electroencephalography. eNeuro. 2019; 6(3):ENEURO.0151-19.2019. [DOI:10.1523/ENEURO.0151-19.2019] [PMID] [PMCID]
100. Schrag A, Anastasiou Z, Ambler G, Noyce A, Walters K. Predicting diagnosis of Parkinson’s disease: A risk algorithm based on primary care presentations. Movement Disorders: Official Journal of The Movement Disorder Society. 2019; 34(4):480-6. [DOI:10.1002/mds.27616] [PMID] [PMCID]
101. Wagle Shukla A, Ounpraseuth S, Okun MS, Gray V, Schwankhaus J, Metzer WS. Micrographia and related deficits in Parkinson’s disease: A cross-sectional study. BMJ Open. 2012; 2(3):e000628. [DOI:10.1136/bmjopen-2011-000628] [PMID] [PMCID]
102. Letanneux A, Danna J, Velay JL, Viallet F, Pinto S. From micrographia to Parkinson’s disease dysgraphia. Movement Disorders: Official Journal of The Movement Disorder Society. 2014; 29(12):1467-75. [DOI:10.1002/mds.25990] [PMID]
103. Nackaerts E, Heremans E, Vervoort G, Smits-Engelsman BC, Swinnen SP, Vandenberghe W, et al. Relearning of writing skills in Parkinson’s disease after intensive amplitude training. Movement Disorders: Official Journal of The Movement Disorder Society. 2016; 31(8):1209-16. [DOI:10.1002/mds.26565] [PMID]
104. Nackaerts E, Broeder S, Pereira MP, Swinnen SP, Vandenberghe W, Nieuwboer A, et al. Handwriting training in Parkinson’s disease: A trade-off between size, speed and fluency. PLoS One. 2017; 12(12):e0190223. [DOI:10.1371/journal.pone.0190223] [PMID] [PMCID]
105. Belkofer CM, Van Hecke AV, Konopka LM. Effects of drawing on alpha activity: A quantitative EEG study with implications for art therapy. Art Therapy. 2014; 31(2):61-8. [DOI:10.1080/07421656.2014.903821]
106. Kaimal G, Ayaz H, Herres J, Dieterich-Hartwell R, Makwana B, Kaiser DH, et al. Functional near-infrared spectroscopy assessment of reward perception based on visual self-expression: Coloring, doodling, and free drawing. The Arts in Psychotherapy. 2017; 55:85-92. [DOI:10.1016/j.aip.2017.05.004]
107. Skodda S, Rinsche H, Schlegel U. Progression of dysprosody in Parkinson’s disease over time-a longitudinal study. Movement Disorders: official Journal of The Movement Disorder Society. 2009; 24(5):716-22. [DOI:10.1002/mds.22430] [PMID]
108. Benba A, Jilbab A, Sandabad S, Hammouch A. Voice signal processing for detecting possible early signs of Parkinson’s disease in patients with rapid eye movement sleep behavior disorder. International Journal of Speech Technology. 2019; 22(1):121-9. [DOI:10.1007/s10772-018-09588-0]
109. Skorvanek M, Feketeova E, Kurtis MM, Rusz J, Sonka K. Accuracy of rating scales and clinical measures for screening of rapid eye movement sleep behavior disorder and for predicting conversion to Parkinson’s disease and other synucleinopathies. Frontiers in Neurology. 2018; 9:376. [DOI:10.3389/fneur.2018.00376] [PMID] [PMCID]
110. 9Glaab E, Trezzi JP, Greuel A, Jäger C, Hodak Z, Drzezga A, et al. Integrative analysis of blood metabolomics and PET brain neuroimaging data for Parkinson’s disease. Neurobiology of Disease. 2019; 124:555-62. [DOI:10.1016/j.nbd.2019.01.003] [PMID]
111. Heim B, Krismer F, De Marzi R, Seppi K. Magnetic resonance imaging for the diagnosis of Parkinson’s disease. Journal of Neural Transmission. 2017; 124(8):915-64. [DOI:10.1007/s00702-017-1717-8] [PMID] [PMCID]
Files | ||
Issue | Vol 16 No 2 (2022) | |
Section | Review Article(s) | |
DOI | https://doi.org/10.18502/jmr.v16i2.9297 | |
Keywords | ||
Parkinson's disease; Assistive technology Movement disorders Early detection of disease Predictive testing |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |