Research Article

Training Interventions Change Relative Power Spectrum of Alpha After Anterior Cruciate Ligament Deficiency in Athletes

Abstract

Introduction: In individuals with anterior cruciate ligament deficiency (ACLD), defective sensory and motor neuroplasticity occurs in the central nervous system (CNS) due to defects in sensory afferents. To successfully restore ACLD individuals to pre-injury conditions, it is necessary to modify the neuroplasticity created in the CNS by prescribing more appropriate training. For this aim, in this study, we used perturbation training differently.
Materials and Methods: Thirty athletes with unilateral anterior cruciate ligament (ACL) rupture were randomly assigned to the perturbation and standard training groups. The training program of two groups was performed in three intermittent sessions per week for one month. The relative power spectrum of alpha of quantitative electroencephalography (QEEG) was measured in three tasks: (1) the single-leg jump-landing, (2) the single-leg stance with opened eyes, and (3) the single-leg stance with closed eyes.
Results: The perturbation training group only showed significant symmetry in the relative power spectrum of alpha between the two limbs in the single-leg jump-landing test (p=0.92, ES=0.04) in comparison pre-post test. Also, this group showed high symmetry in the alpha band in the single-leg stance test with closed eyes (p=0.53, ES=0.16).
Conclusion: The results of the present study showed that both mechanical perturbation and standard training are suitable for transporting ACLDs back to sports. It also seems that mechanical perturbation training had higher effectiveness in modifying the CNS alpha power.

Criss CR, Melton MS, Ulloa SA, Simon JE, Clark BC, France CR, et al. Rupture , reconstruction , and rehabilitation : A multi-disciplinary review of mechanisms for central nervous system adaptations following anterior cruciate ligament injury. The Knee. 2021; 30:78-89. [DOI:10.1016/j.knee.2021.03.009] [PMID]

Neto T, Sayer T, Theisen D, Mierau A. Functional brain plasticity associated with ACL injury : A scoping review of current evidence. Neural Plasticity. 2019; 2019:3480512. [DOI:10.1155/2019/3480512] [PMID] [PMCID]

Grooms D, Appelbaum G, Onate J. Neuroplasticity following anterior cruciate ligament injury: A framework for visual-motor training approaches in rehabilitation. The Journal of Orthopaedic and Sports Physical Therapy. 2015; 45(5):381-93. [DOI:10.2519/jospt.2015.5549] [PMID]

Daneshmandi H, Payandeh M, Mohammad Ashour Z. [Brain neuroplasticity effects on the occurrence of anterior cruciate ligament injury and the effect of this injury on brain function and structure: A systematic review (Persian)]. Archives of Rehabilitation. 2022; 23(2):162-85. [DOI:10.32598/RJ.23.2.3377.1]

Jomhouri S, Talebian S, Vaez Mousavi M, Hatef B, Sadjadi Hazaveh SH. Corticomuscular adaptations in the single-leg jump task in response to progressive mechanical perturbation training in individuals with anterior cruciate ligament deficiency. Journal of Modern Rehabilitation. 2022; 16(1):85-100. [DOI:10.18502/jmr.v16i1.8572]

Needle AR, Lepley AS, Grooms DR. Central nervous system adaptation after ligamentous injury : A summary of theories , evidence , and clinical interpretation. Sports Medicine. 2017; 47(7):1271-88. [DOI:10.1007/s40279-016-0666-y] [PMID]

Han J, Waddington G, Adams R, Anson J, Liu Y. Assessing proprioception : A critical review of methods. Journal of Sport and Health Science. 2016; 5(1):80-90. [DOI:10.1016/j.jshs.2014.10.004] [PMID] [PMCID]

Dominic D, Saravanan P, Kishore S. A quantitative assessment of proprioceptive function improvement after Arthroscopic ACL Reconstruction surgery. Journal of Evolution of Medical and Dental Sciences. 2015; 4(38):6565-71. [DOI:10.14260/jemds/2015/952]

Kim HJ, Lee JH, Lee DH. Proprioception in patients with anterior cruciate ligament tears: A meta-analysis comparing injured and uninjured limbs. The American Journal of Sports Medicine. 2017; 45(12):2916-22. [DOI:10.1177/0363546516682231] [PMID]

Negahban H, Mazaheri M, Kingma I, van Dieën JH. A systematic review of postural control during single-leg stance in patients with untreated anterior cruciate ligament injury. Knee Surgery, Sports Traumatology, Arthroscopy: Official Journal of the ESSKA. 2013; 22(7):1491-504. [DOI:10.1007/s00167-013-2501-4] [PMID]

Huang H, Keijsers N, Horemans H, Guo Q, Yu Y, Stam H, et al. Anterior cruciate ligament rupture is associated with abnormal and asymmetrical lower limb loading during walking. Journal of Science and Medicine in Sport. 2017; 20(5):432-7. [DOI:10.1016/j.jsams.2016.09.010] [PMID]

McLeod S. What does effect size tell you? Simply Psychology. 2019; 1-3. [Link]

Hülsdünker T, Mierau A, Strüder HK. Higher balance task demands are associated with an increase in individual alpha peak frequency. Frontiers in Human Neuroscience. 2016; 9:695. [DOI:10.3389/fnhum.2015.00695] [PMID] [PMCID]

Grooms DR, Page SJ, Onate JA. Brain activation for knee movement measured days before second anterior cruciate ligament injury: Neuroimaging in musculoskeletal medicine. Journal of Athletic Training. 2015; 50(10):1005-10. [DOI:10.4085/1062-6050-50.10.02] [PMCID]

Baumeister J, Reinecke K, Schubert M, Weiss M. Altered electrocortical brain activity after ACL reconstruction during force control. Journal of Orthopaedic Research : Official Publication of The Orthopaedic Research Society. 2011; 29(9):1383-9. [DOI:10.1002/jor.21380] [PMID]

Grooms DR, Diekfuss JA, Criss CR, Anand M, Slutsky-Ganesh AB, DiCesare CA, et al. Preliminary brain-behavioral neural correlates of anterior cruciate ligament injury risk landing biomechanics using a novel bilateral leg press neuroimaging paradigm. PLoS One. 2022; 17(8):e0272578. [DOI:10.1371/journal.pone.0272578] [PMID] [PMCID]

Baumeister J, von Detten S, van Niekerk SM, Schubert M, Ageberg E, Louw QA. Brain activity in predictive sensorimotor control for landings : An EEG pilot study. International Journal of Sports Medicine. 2013; 34(12):1106-11. [DOI:10.1055/s-0033-1341437] [PMID]

Miao X, Huang H, Hu X, Li D, Yu Y, Ao Y. The characteristics of EEG power spectra changes after ACL rupture. PLoS One. 2017; 12(2):e0170455. [DOI:10.1371/journal.pone.0170455] [PMID] [PMCID]

Bazanova OM, Vernon D. Interpreting EEG alpha activity. Neuroscience and Biobehavioral Reviews. 2013; 44:94-110. [DOI:10.1016/j.neubiorev.2013.05.007] [PMID]

Klimesch W. Alpha-band oscillations, attention, and controlled access to stored information. Trends in Cognitive Sciences. 2012; 16(12):606-17. [DOI:10.1016/j.tics.2012.10.007] [PMID] [PMCID]

Del Percio C, Babiloni C, Marzano N, Iacoboni M, Infarinato F, Vecchio F, et al. Neural efficiency of athletes ‘ brain for upright standing : A high-resolution EEG study. Brain Research Bulletin. 2009; 79(3-4):193-200. [DOI:10.1016/j.brainresbull.2009.02.001] [PMID]

Gola M, Magnuski M, Szumska I, Wróbel A. EEG beta band activity is related to attention and attentional de fi cits in the visual performance of elderly subjects. International Journal of Psychophysiology. 2013; 89(3):334-41. [DOI:10.1016/j.ijpsycho.2013.05.007] [PMID]

von Stein A, Sarnthein J. Different frequencies for different scales of cortical integration : From local gamma to long range alpha r theta synchronization. International Journal of Psychophysiology. 2000; 38(3):301-13. [DOI:10.1016/S0167-8760(00)00172-0] [PMID]

Gokeler A, Neuhaus D, Benjaminse A, Grooms DR, Baumeister J. Principles of motor learning to support neuroplasticity after ACL injury : Implications for optimizing performance and reducing risk of second ACL injury. Sport Medicine. 2019; 49(6):853-65. [DOI:10.1007/s40279-019-01078-w] [PMID] [PMCID]

Gokeler A, Seil R, Kerkhoffs G, Verhagen E. A novel approach to enhance ACL injury prevention programs. Journal of Experimental Orthopaedics. 2018; 5(1):22. [PMID] [PMCID]

Moksnes H, Snyder-Mackler L, Risberg MA. Individuals with an anterior cruciate ligament-deficient knee classified as noncopers may be candidates for nonsurgical rehabilitation. The Journal of Orthopaedic and Sports Physical Therapy. 2008; 38(10):586-95. [DOI:10.2519/jospt.2008.2750] [PMID] [PMCID]

Okuda K, Abe N, Katayama Y, Senda M, Kuroda T, Inoue H. Effect of vision on postural sway in anterior cruciate ligament injured knees. Journal of Orthopaedic Science. 2005; 10(3):277-83. [DOI:10.1007/s00776-005-0893-9] [PMID]

Gokeler A, Bisschop M, Myer GD, Benjaminse A, Dijkstra PU, van Keeken HG, et al. Immersive virtual reality improves movement patterns in patients after ACL reconstruction : Implications for enhanced criteria- based return-to-sport rehabilitation. Knee Surgery, Sports Traumatology, Arthroscopy. 2016; 24(7):2280-6. [DOI:10.1007/s00167-014-3374-x] [PMID]

McLean SG, Lipfert SW, van den Bogert AJ. Effect of gender and defensive opponent on the biomechanics of sidestep cutting. Medicine and Science in Sports and Exercise. 2004; 36(6):1008-16. [DOI:10.1249/01.MSS.0000128180.51443.83] [PMID]

Borotikar BS, Newcomer R, Koppes R, McLean SG. Combined effects of fatigue and decision making on female lower limb landing postures : Central and peripheral contributions to ACL injury risk. Clinical Biomechanics (Bristol, Avon). 2008; 23(1):81-92. [DOI:10.1016/j.clinbiomech.2007.08.008] [PMID]

Mohapatra S, Krishnan V, Aruin AS. Postural control in response to an external perturbation: Effect of altered proprioceptive information. Experimental Brain Research. 2012; 217(2):197-208. [DOI:10.1007/s00221-011-2986-3] [PMID] [PMCID]

Jomhouri S, Talebian S, Vaez Mousavi M, Hatef B, Sadjadi Hazaveh SH. Changes in the trend of walking motor control in athletes with anterior cruciate ligament deficiency in response to progressive perturbation trainings. Austin Sports Medicine. 2021; 6(1):1045-53. [Link]

Pollok B, Latz D, Krause V, Butz M, Schnitzler A. Changes of motor-cortical oscillations associated with motor learning. Neuroscience. 2014; 275:47-53. [DOI:10.1016/j.neuroscience.2014.06.008] [PMID]

Gutmann B, Hülsdünker T, Mierau J, Strüder HK, Mierau A. Exercise-induced changes in EEG alpha power depend on frequency band definition mode. Neuroscience Letters. 2018; 662:271-5. [DOI:10.1016/j.neulet.2017.10.033] [PMID]

No author. Introduction; features and functions-Tanita BC-601F instruction manual [Internet]. 2023 [Updated 2023 June]. Acailable from: [Link]

Diermeier T, Rothrauff BB, Engebretsen L, Lynch AD, Ayeni OR, Paterno MV, et al. Treatment after anterior cruciate ligament injury: Panther symposium ACL treatment consensus group. Knee Surgery, Sports Traumatology, Arthroscopy. 2020; 28(8):2390-402. [DOI:10.1007/s00167-020-06012-6] [PMID] [PMCID]

Fitzgerald GK, Axe MJ, Snyder-Mackler L. Proposed practice guidelines for nonoperative anterior cruciate ligament rehabilitation of physically active individuals. The Journal of Orthopaedic and Sports Physical Therapy. 2000; 30(4):194-203. [PMID]

Howard JS, Fazio MA, Mattacola CG, Uhl TL, Jacobs CA. Structure, sex, and strength and knee and hip kinematics during landing. Journal of Athletic Training. 2011; 46(4):376-85. [DOI:10.4085/1062-6050-46.4.376] [PMID] [PMCID]

Padua DA, DiStefano LJ, Beutler AI, de la Motte SJ, DiStefano MJ, Marshall SW. The landing error scoring system as a screening tool for an anterior cruciate ligament injury-prevention program in elite-youth soccer athletes.Journal of Athletic Training. 2015; 50(6):589-95. [DOI:10.4085/1062-6050-50.1.10] [PMID] [PMCID]

Ross SE, Guskiewicz KM, Yu B. Single-leg jump-landing stabilization times in subjects with functionally unstable ankles. Journal of Athletic Training. 2005; 40(4):298-304. [PMID]

Nawasresh Z, Logerstedt D, Failla M, Snyder-Mackler L. No difference between mechanical perturbation training with compliant surface and manual perturbation training on knee functional performance after ACL rupture. Journal of Orthopaedic Research. 2018; 36(5):1391-7. [DOI:10.1002/jor.23784] [PMID] [PMCID]

Hartigan E, Axe MJ, Snyder-Mackler L. Perturbation training prior to ACL reconstruction improves gait asymmetries in non-copers. Journal of Orthopaedic Research. 2009; 27(6):724-9. [DOI:10.1002/jor.20754] [PMID] [PMCID]

Nawasreh Z, Failla M, Marmon A, Logerstedt D, Snyder-Mackler L. Comparing the effects of mechanical perturbation training with a compliant surface and manual perturbation training on joints kinematics after ACL- rupture. Gait & Posture. 2018; 64:43-49. [DOI:10.1016/j.gaitpost.2018.05.027] [PMID] [PMCID]

Nawasreh ZH, Marmon AR, Logerstedt D, Snyder-Mackler L. The effect of the training on a compliant surface on muscle activation and co-contraction after anterior cruciate ligament injury. International Journal of Sports Physical Therapy. 2019; 14(4):3554-63. [DOI:10.26603/ijspt20190554] [PMID]

Zhang Z, Gao Y, Wang J. Human movement science effects of vision and cognitive load on anticipatory and compensatory postural control. Human Movement Science. 2019; 64:398-408. [DOI:10.1016/j.humov.2019.02.011] [PMID]

Letafatkar A, Rajabi R, Minoonejad H, Rabiei P. Efficacy of perturbation-enhanced neuromuscular training on hamstring and quadriceps onset time, activation and knee flexion during tuck-jump task. International Journal of Sports Physical Therapy. 2019; 14(2):214-27. [PMID]

Mierau A, Hülsdünker T, Strüder HK. Changes in cortical activity associated with adaptive behavior during repeated balance perturbation of unpredictable timing. Frontiers in Behavioral Neuroscience. 2015; 9:272. [DOI:10.3389/fnbeh.2015.00272] [PMID] [PMCID]

Wang C, Rajagovindan R, Han SM, Ding M. Top-down control of visual alpha oscillations : Sources of control signals and their mechanisms of action. Frontiers in Human Neuroscience. 2016; 10:15. [DOI:10.3389/fnhum.2016.00015] [PMID] [PMCID]

Del Percio C, Brancucci A, Bergami F, Marzano N, Fiore A, Di Ciolo E, et al. Cortical alpha rhythms are correlated with body sway during quiet open-eyes standing in athletes : A high-resolution EEG study. Neuroimage. 2007; 36(3):822-9. [PMID]

Edwards AE, Guven O, Furman MD, Arshad Q, Bronstein AM. Electroencephalographic correlates of continuous postural tasks of increasing difficulty. Neuroscience. 2018; 395:35-48. [DOI:10.1016/j.neuroscience.2018.10.040] [PMID]

Netz Y. Is there a preferred mode of exercise for cognition enhancement in older age ? A narrative review. Frontiers in Medicine. 2019; 6:57. [DOI:10.3389/fmed.2019.00057] [PMID] [PMCID]

Files
IssueVol 17 No 3 (2023) QRcode
SectionResearch Article(s)
DOI https://doi.org/10.18502/jmr.v17i3.13073
Keywords
Anterior cruciate ligament Electroencephalography Training

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Jomhouri S, Talebian S, Vaez-Mousavi M, Sadjadi-Hazaveh SH. Training Interventions Change Relative Power Spectrum of Alpha After Anterior Cruciate Ligament Deficiency in Athletes. jmr. 2023;17(3):319-333.