Effects of Repetition Rate on Tone Burst Auditory Brainstem Responses in Normal Young Adult Wistar Rats
Abstract
Background and aim: Repetition rate of stimulus as an audiological assessment criterion plays important role in differential diagnosis in some special populations. Therefore, the goal of this study was to evaluate normal variation of the auditory brainstem response (ABR) parameters including latency, amplitude, morphology and component’s duration (width) by using two different rates with tonal stimuli at different frequencies in Wistar rats.
Methods: In this experimental study, forty-five young adult male Wistar rats were subjected to ABR measurements with tone burst stimuli in octave frequencies from 2 to 16 kHz with two rates of 11.1 and 57.1/sec, following the relevant protocols. The stimuli were delivered at an intensity of 80 dB SPL and through a speaker.
Results: At high rate, latency changes in later waves were greater than earlier components whereas amplitude changes in later waves were smaller than earlier ones. Rate-dependent changes as a function of frequency were uniform for latency versus amplitude. Morphologically, ABR components were broadened in a frequency-dependent way. Duration of wave I was shorter than wave IV as well as wave duration changes influenced by frequency. These findings were statistically significant (p<0.05).
Conclusion: The results can be likely due to differences in adaptation mechanisms in auditory system, additive synapse theory and, desynchronization by increasing stimulation rate. Knowledge of the various effects of rate as a function of frequency on ABR parameters in normal rats is basic to understanding how different changes of these parameters at each wave could lead to more precise diagnosis in neuro-pathologic conditions.
2. Alvarado JC, Fuentes-Santamaría V, Jareno-Flores T, Blanco JL, Juiz JM. Normal variations in the morphology of auditory brainstem response (ABR) waveforms: a study in Wistar rats. Neuroscience research. 2012;73(4):302-11. https://doi.org/HYPERLINK "https://doi.org/10.1016/j.neures.2012.05.001"10.1016HYPERLINK "https://doi.org/10.1016/j.neures.2012.05.001"/j.neures.HYPERLINK "https://doi.org/10.1016/j.neures.2012.05.001"2012.05.001
3. Freeman S, Sohmer H, Silver S. The effect of stimulus repetition rate on the diagnostic efficacy of the auditory nerve-brain-stem evoked response. Electroencephalography and Clinical Neurophysiology. 1991;78(4):284-90. https://dx.doi.org/HYPERLINK "https://dx.doi.org/10.1016/0013-4694(91)90182-4"10.1016HYPERLINK "https://dx.doi.org/10.1016/0013-4694(91)90182-4"/HYPERLINK "https://dx.doi.org/10.1016/0013-4694(91)90182-4"0013-4694HYPERLINK "https://dx.doi.org/10.1016/0013-4694(91)90182-4"(HYPERLINK "https://dx.doi.org/10.1016/0013-4694(91)90182-4"91HYPERLINK "https://dx.doi.org/10.1016/0013-4694(91)90182-4")HYPERLINK "https://dx.doi.org/10.1016/0013-4694(91)90182-4"90182-4
4. Burkard RF, Eggermont JJ, Don M. Auditory evoked potentials: basic principles and clinical application: Lippincott Williams & Wilkins; 2007.
5. Paludetti G, Maurizi M, Ottaviani F. Effects of stimulus repetition rate on the auditory brain stem responses (ABR). Otology & Neurotology. 1983;4(3):226-34.
6. Polonenko MJ, Maddox RK. Exposing distinct subcortical components of the auditory brainstem response evoked by continuous naturalistic speech. Elife. 2021;10:e62329. http:s//doi.org/10.7554/eLife.62329
7. Pratt H, Sohmer H. Intensity and rate functions of cochlear and brainstem evoked responses to click stimuli in man. Archives of oto-rhino-laryngology. 1976;212:85-92.
8. Seif AA, Guerville R, Rajab MS, Marceau-Linhares C, Schaaf K, Schmid S, et al. Auditory Brainstem Development in Autism: From Childhood Hypo-Responsivity to Adult Hyper-Reactivity. bioRxiv. 2025:2025.04. 22.650041. https://doi.org/HYPERLINK "https://doi.org/10.1101/2025.04.22.650041"10.1101HYPERLINK "https://doi.org/10.1101/2025.04.22.650041"/HYPERLINK "https://doi.org/10.1101/2025.04.22.650041"2025.04.22.650041
9. Thornton A, Coleman M. The adaptation of cochlear and brainstem auditory evoked potentials in humans. Electroencephalography and clinical neurophysiology. 1975;39(4):399-406. http:s//doi.org/10.1016/0013-4694(75)9403-0
10. Van Olphen A, Rodenburg M, Verwey C. Influence of the stimulus repetition rate on brain-stem-evoked responses in man. Audiology. 1979;18(5):388-94.
11. WEBER BA, FUJIKAWA SM. Brainstem evoked response (BER) audiometry at various stimulus presentation rates. Ear and Hearing. 1977;3(2):59-62.
12. Zöllner C, Karnahl T, Stange G. Input-output function and adaptation behaviour of the five early potentials registered with the earlobe-vertex pick-up. Archives of oto-rhino-laryngology. 1976;212:23-33.
13. Newton EH, Cooper Jr WA, Coleman JR. Rate and frequency interactions in the auditory brainstem response of the adult rat. Hearing research. 1992;60(1):73-9. https://doi.org/HYPERLINK "https://doi.org/10.1016.0378-5955(92)90060-Z"10.1016.0378-5955HYPERLINK "https://doi.org/10.1016.0378-5955(92)90060-Z"(HYPERLINK "https://doi.org/10.1016.0378-5955(92)90060-Z"92HYPERLINK "https://doi.org/10.1016.0378-5955(92)90060-Z")HYPERLINK "https://doi.org/10.1016.0378-5955(92)90060-Z"90060HYPERLINK "https://doi.org/10.1016.0378-5955(92)90060-Z"-Z
14. Heidari F, Moghadasi Boroujeni F. Clinical Considerations in the Differential Diagnosis of Children with Auditory Neuropathy Spectrum Disorder from Sensorineural Hearing Loss; Case Report. Journal of Isfahan Medical School. 2022;39(650):889-93. https://doi.org/HYPERLINK "https://doi.org/10.22122/JIMS.V39l650.14831"10.22122HYPERLINK "https://doi.org/10.22122/JIMS.V39l650.14831"/JIMS.VHYPERLINK "https://doi.org/10.22122/JIMS.V39l650.14831"39HYPERLINK "https://doi.org/10.22122/JIMS.V39l650.14831"lHYPERLINK "https://doi.org/10.22122/JIMS.V39l650.14831"650.14831
15. Rance G, Chisari D, O’Hare F, Roberts L, Shaw J, Jandeleit-Dahm K, et al. Auditory neuropathy in individuals with Type 1 diabetes. Journal of neurology. 2014;261:1531-6.
16. Lasky RE. A developmental study on the effect of stimulus rate on the auditory evoked brain-stem response. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section. 1984;59(5):411-9. http://dx.doi.org/HYPERLINK "http://dx.doi.org/10.1016/0168-5597(84)90042-X"10.1016HYPERLINK "http://dx.doi.org/10.1016/0168-5597(84)90042-X"/HYPERLINK "http://dx.doi.org/10.1016/0168-5597(84)90042-X"0168-5597HYPERLINK "http://dx.doi.org/10.1016/0168-5597(84)90042-X"(HYPERLINK "http://dx.doi.org/10.1016/0168-5597(84)90042-X"84HYPERLINK "http://dx.doi.org/10.1016/0168-5597(84)90042-X")HYPERLINK "http://dx.doi.org/10.1016/0168-5597(84)90042-X"90042HYPERLINK "http://dx.doi.org/10.1016/0168-5597(84)90042-X"-X
17. Lasky RE. Rate and adaptation effects on the auditory evoked brainstem response in human newborns and adults. Hearing Research. 1997;111(1-2):165-76. http://dx.doi.org/HYPERLINK "http://dx.doi.org/10.1016/S0378-5955(97)00106-8"10.1016HYPERLINK "http://dx.doi.org/10.1016/S0378-5955(97)00106-8"/SHYPERLINK "http://dx.doi.org/10.1016/S0378-5955(97)00106-8"0378-5955HYPERLINK "http://dx.doi.org/10.1016/S0378-5955(97)00106-8"(HYPERLINK "http://dx.doi.org/10.1016/S0378-5955(97)00106-8"97HYPERLINK "http://dx.doi.org/10.1016/S0378-5955(97)00106-8")HYPERLINK "http://dx.doi.org/10.1016/S0378-5955(97)00106-8"00106-8
18. Reichmuth C, Mulsow J, Finneran JJ, Houser DS, Supin AY. Measurement and response characteristics of auditory brainstem responses in pinnipeds. Aquatic Mammals. 2007;33(1):132-50.
19. Overbeck GW, Church MW. Effects of tone burst frequency and intensity on the auditory brainstem response (ABR) from albino and pigmented rats. Hearing research. 1992;59(2):129-37. http://dx.doi.org/HYPERLINK "http://dx.doi.org/10.1016/0378-5955(92)90110-9"10.1016HYPERLINK "http://dx.doi.org/10.1016/0378-5955(92)90110-9"/HYPERLINK "http://dx.doi.org/10.1016/0378-5955(92)90110-9"0378-5955HYPERLINK "http://dx.doi.org/10.1016/0378-5955(92)90110-9"(HYPERLINK "http://dx.doi.org/10.1016/0378-5955(92)90110-9"92HYPERLINK "http://dx.doi.org/10.1016/0378-5955(92)90110-9")HYPERLINK "http://dx.doi.org/10.1016/0378-5955(92)90110-9"90110-9
20. Jafarzadeh S, Pourbakht A. Morphology variations of click-evoked auditory brainstem response with low and high rate stimuli in rat. Auditory and Vestibular Research. 2019. https://doi.org/HYPERLINK "https://doi.org/10.18502/avr.v28i1.412"10.18502HYPERLINK "https://doi.org/10.18502/avr.v28i1.412"/avr.vHYPERLINK "https://doi.org/10.18502/avr.v28i1.412"28HYPERLINK "https://doi.org/10.18502/avr.v28i1.412"iHYPERLINK "https://doi.org/10.18502/avr.v28i1.412"1.412
21. Heidari F,Pourbakht A, Kamrava SK, Kamali M, Yousefi A. Comparison of cochlear microphonics magnitude with broad and narrow band stimuli in healthy adult Wistar rats. Iranian Journal of Child Neurology. 2018;12(2):58.
22. Pickles JO. An introduction to the physiology of hearing: Academic press London; 2012.
23. Tejani VD, Kim J-S, Oleson JJ, Abbas PJ, Brown CJ, Hansen MR, et al. Residual hair cell responses in electric-acoustic stimulation cochlear implant users with complete loss of acoustic hearing after implantation. Journal of the Association for Research in Otolaryngology. 2021;22:161-76.
24. Domarecka E, Kalcioglu MT, Mutlu A, Özgür A, Smit J, Olze H, et al. Reporting data on auditory brainstem responses (ABR) in rats: recommendations based on review of experimental protocols and literature. Brain Sciences. 2021;11(12):1596. https://doi.org/HYPERLINK "https://doi.org/10.3390/brainsci11121596"10.3390HYPERLINK "https://doi.org/10.3390/brainsci11121596"/brainsciHYPERLINK "https://doi.org/10.3390/brainsci11121596"11121596
25. Prijs VF, Eggermont JJ. Narrow-band analysis of compound action potentials for several stimulus conditions in the guinea pig. Hearing Research. 1981;4(1):23-41. https://doi.org/HYPERLINK "https://doi.org/10.1016/0378-5955(81)90034-4"10.1016HYPERLINK "https://doi.org/10.1016/0378-5955(81)90034-4"/HYPERLINK "https://doi.org/10.1016/0378-5955(81)90034-4"0378-5955HYPERLINK "https://doi.org/10.1016/0378-5955(81)90034-4"(HYPERLINK "https://doi.org/10.1016/0378-5955(81)90034-4"81HYPERLINK "https://doi.org/10.1016/0378-5955(81)90034-4")HYPERLINK "https://doi.org/10.1016/0378-5955(81)90034-4"90034-4
26. Smith D, Mills J. Low-frequency component of the gerbil brainstem response: response characteristics and anesthesia effects. Hearing research. 1991;54(1):1-10. http://dx.doi.org/HYPERLINK "http://dx.doi.org/10.1016/0378-5955(91)90130-2"10.1016HYPERLINK "http://dx.doi.org/10.1016/0378-5955(91)90130-2"/HYPERLINK "http://dx.doi.org/10.1016/0378-5955(91)90130-2"0378-5955HYPERLINK "http://dx.doi.org/10.1016/0378-5955(91)90130-2"(HYPERLINK "http://dx.doi.org/10.1016/0378-5955(91)90130-2"91HYPERLINK "http://dx.doi.org/10.1016/0378-5955(91)90130-2")HYPERLINK "http://dx.doi.org/10.1016/0378-5955(91)90130-2"90130-2
27. Suzuki T, Kobayashi K, Takagi N. Effects of stimulus repetition rate on slow and fast components of auditory brain-stem responses. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section. 1986;65(2):150-6. https://doi.org/HYPERLINK "https://doi.org/10.1016/0168-5597(86)90048-1"10.1016HYPERLINK "https://doi.org/10.1016/0168-5597(86)90048-1"/HYPERLINK "https://doi.org/10.1016/0168-5597(86)90048-1"0168-5597HYPERLINK "https://doi.org/10.1016/0168-5597(86)90048-1"(HYPERLINK "https://doi.org/10.1016/0168-5597(86)90048-1"86HYPERLINK "https://doi.org/10.1016/0168-5597(86)90048-1")HYPERLINK "https://doi.org/10.1016/0168-5597(86)90048-1"90048-1
28. Lin N, Urata S, Cook R, Makishima T. Sex differences in the auditory functions of rodents. Hearing Research. 2022;419:108271. "https://doi.org/10.1016/j.heares.2021.108271.
Issue | Articles in Press | |
Section | Research Article(s) | |
Keywords | ||
Auditory brainstem response; Repetition rate; Wistar rat; Morphology; Wave duration; Latency |
Rights and permissions | |
![]() |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |