Review Article

Effects of Transcranial Direct-Current Stimulation and Cognitive Training on Individuals with Mild Cognitive Impairment and Dementia: A Systematic Review and Meta-Analysis

Abstract

Introduction: We aimed to systematically evaluate the most recent evidence regarding the potential short-term and long-term synergistic effects of transcranial direct-current stimulation (tDCS) and cognitive training (CT) on the memory of individuals with mild cognitive impairment (MCI) or dementia and to explore the optimal treatment protocol.
Materials and Methods: Following the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines, a comprehensive literature search on PubMed, Medline, CINAHL and EMBASE was conducted to identify eligible randomized controlled trials (RCTs) published up to December 2022. The identified studies were summarized and analyzed to examine the efficacy of the combined intervention.
Results: Ten studies involving participants with MCI or dementia were included. Four RCTs with memory-related outcomes were analyzed. A small-to-medium effect size (ES) of 0.28 was found for the short-term effect (95% CI, 0.02%, 0.55%). However, the long-term effect was non-significant, with an ES of 0.17 (95% CI, -0.09%, 0.44%).
Conclusion: The combined intervention appears to effectively mitigate cognitive decline in the short term only. Optimal treatment protocol remains inconclusive due to heterogeneity among studies. More robust evidence is required to determine whether the combined approach can serve as an effective intervention in clinical practice.

Anderson ND. State of the science on mild cognitive impairment (MCI). CNS Spectrums. 2019; 24(1):78-87. [DOI:10.1017/S1092852918001347] [PMID]

Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: Clinical characterization and outcome. Archives of Neurology. 1999; 56(3):303-8. [DOI:10.1001/archneur.56.3.303] [PMID]

Alzheimer's Disease International (ADI). World alzheimer report 2015: The global impact of dementia: An analysis of prevalence, incidence, cost and trends [Internet]. 2015 [Updated 2024 December 25]. Available from: [Link]

Cummings JL, Morstorf T, Zhong K. Alzheimer’s disease drug-development pipeline: Few candidates, frequent failures. Alzheimer’s Research & Therapy. 2014; 6(4):37. [DOI:10.1186/alzrt269] [PMID]

Belleville S. Cognitive training for persons with mild cognitive impairment. International Psychogeriatrics. 2008; 20(1):57-66. [DOI:10.1017/S104161020700631X] [PMID]

Woods AJ, Antal A, Bikson M, Boggio PS, Brunoni AR, Celnik P, et al. A technical guide to tDCS, and related noninvasive brain stimulation tools. Clinical Neurophysiology. 2016; 127(2):1031-48. [DOI:10.1016/j.clinph.2015.11.012] [PMID]

Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, et al. Transcranial direct current stimulation: State of the art 2008. Brain Stimulation. 2008; 1(3):206-23. [DOI:10.1016/j.brs.2008.06.004] [PMID]

Stagg CJ, Best JG, Stephenson MC, O’Shea J, Wylezinska M, Kincses ZT, et al. Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. The Journal of Neuroscience. 2009; 29(16):5202-6. [DOI:10.1523/JNEUROSCI.4432-08.2009] [PMID]

Rozisky JR, Antunes LC, Brietzke AP, de Sousa AC, Caumo W. Transcranial direct current stimulation and neuroplasticity. In: Rogers L, editor. Transcranial direct current stimulation (tDCS): Emerging used, safety and neurobiological effects. New York: Nova Science Publishers Inc; 2015. [Link]

Stafford J, Brownlow ML, Qualley A, Jankord R. AMPA receptor translocation and phosphorylation are induced by transcranial direct current stimulation in rats. Neurobiology of Learning and Memory. 2018; 150:36-41. [DOI:10.1016/j.nlm.2017.11.002] [PMID]

Ferrucci R, Mameli F, Guidi I, Mrakic-Sposta S, Vergari M, Marceglia S, et al. Transcranial direct current stimulation improves recognition memory in Alzheimer disease. Neurology. 2008; 71(7):493-8. [DOI:10.1212/01.wnl.0000317060.43722.a3] [PMID]

Boggio PS, Ferrucci R, Mameli F, Martins D, Martins O, Vergari M, et al. Prolonged visual memory enhancement after direct current stimulation in alzheimer’s disease. Brain Stimulation. 2012; 5(3):223-30. [DOI:10.1016/j.brs.2011.06.006] [PMID]

Kuo MF, Nitsche MA. Effects of transcranial electrical stimulation on cognition. Clinical EEG and Neuroscience. 2012; 43(3):192-9. [DOI:10.1177/1550059412444975] [PMID]

Cruz Gonzalez P, Fong KNK, Brown T. The effects of transcranial direct current stimulation on the cognitive functions in older adults with mild cognitive impairment: A pilot study. Behavioural Neurology. 2018; 2018:5971385.[DOI:10.1155/2018/5971385] [PMID]

Bahar-Fuchs A, Martyr A, Goh AM, Sabates J, Clare L. Cognitive training for people with mild to moderate dementia. Cochrane Database of Systematic Reviews. 2019; 3(3):CD013069. [DOI:10.1002/14651858.CD013069.pub2] [PMID]

Hill NT, Mowszowski L, Naismith SL, Chadwick VL, Valenzuela M, Lampit A. Computerized cognitive training in older adults with mild cognitive impairment or dementia: A systematic review and meta-analysis. American Journal of Psychiatry. 2017; 174(4):329-40. [DOI:10.1176/appi.ajp.2016.16030360] [PMID]

Majdi A, van Boekholdt L, Sadigh-Eteghad S, Mc Laughlin M. A systematic review and meta-analysis of transcranial direct-current stimulation effects on cognitive function in patients with Alzheimer’s disease. Molecular Psychiatry. 2022; 27(4):2000-9. [DOI:10.1038/s41380-022-01444-7] [PMID]

Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al. The prisma statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. Annals of Internal Medicine. 2009; 151(4):W65-94. [DOI:10.7326/0003-4819-151-4-200908180-00136] [PMID]

Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of thePEDro scale for rating quality of randomized controlled trials. Physical Therapy. 2003; 83(8):713-21. [DOI:10.1093/ptj/83.8.713] [PMID]

Grober E, Buschke H. Genuine memory deficits in dementia. Developmental Neuropsychology. 1987; 3(1):13-36. [DOI:10.1080/87565648709540361]

Borenstein M, Hedges LV, Higgins JPT, Rothstein H. Introduction to meta-analysis. Hoboken, NJ: John Wiley & Sons, Inc; 2009. [Link]

Borenstein M, Hedges LV, Higgins JP, Rothstein HR. A basic introduction to fixed-effect and random-effects models for meta-analysis. Research Synthesis Methods. 2010; 1(2):97-111. [DOI:10.1002/jrsm.12] [PMID]

Gignac GE, Szodorai ET. Effect size guidelines for individual differences researchers. Personality and Individual Differences. 2016; 102:74-8. [DOI:10.1016/j.paid.2016.06.069]

Das N, Spence JS, Aslan S, Vanneste S, Mudar R, Rackley A, et al. Cognitive training and transcranial direct current stimulation in mild cognitive impairment: A randomized pilot trial. Frontiers in Neuroscience. 2019; 13:307. [DOI:10.3389/fnins.2019.00307] [PMID]

Manenti R, Sandrini M, Gobbi E, Binetti G, Cotelli M. Effects of transcranial direct current stimulation on episodic memory in amnestic mild cognitive impairment: A pilot study. The Journals of Gerontology: Series B. 2018; 75(7):1403-13. [DOI:10.1093/geronb/gby134] [PMID]

Gonzalez PC, Fong KNK, Brown T. Transcranial direct current stimulation as an adjunct to cognitive training for older adults with mild cognitive impairment: A randomized controlled trial. Annals of Physical and Rehabilitation Medicine. 2021; 64(5):101536. [DOI:10.1016/j.rehab.2021.101536] [PMID]

de Sousa AV, Grittner U, Rujescu D, Külzow N, Flöel A. Impact of 3-day combined anodal transcranial direct current stimulation-visuospatial training on object-location memory in healthy older adults and patients with mild cognitive impairment. Journal of Alzheimer’s Disease. 2020; 75(1):223-44. [DOI:10.3233/JAD-191234] [PMID]

Cotelli M, Adenzato M, Cantoni V, Manenti R, Alberici A, Enrici I, et al. Enhancing theory of mind in behavioural variant frontotemporal dementia with transcranial direct current stimulation. Cognitive, Affective, & Behavioral Neuroscience. 2018; 18(6):1065-75. [DOI:10.3758/s13415-018-0622-4] [PMID]

Roncero C, Kniefel H, Service E, Thiel A, Probst S, Chertkow H. Inferior parietal transcranial direct current stimulation with training improves cognition in anomic alzheimer’s disease and frontotemporal dementia. Alzheimer’s & Dementia. 2017; 3(2):247-53. [DOI:10.1016/j.trci.2017.03.003] [PMID]

Lu H, Chan SSM, Chan WC, Lin C, Cheng CPW, Linda Chiu Wa L. Randomized controlled trial of TDCS on cognition in 201 seniors with mild neurocognitive disorder. Annals of Clinical and Translational Neurology. 2019; 6(10):1938-48. [DOI:10.1002/acn3.50823] [PMID]

Cotelli M, Manenti R, Brambilla M, Petesi M, Rosini S, Ferrari C, et al. Anodal tDCS during face-name associations memory training in alzheimer’s patients. Frontiers in Aging Neuroscience. 2014 ; 6:38. [DOI:10.3389/fnagi.2014.00038]

Rodella C, Bernini S, Panzarasa S, Sinforiani E, Picascia M, Quaglini S, et al. A double-blind randomized controlled trial combining cognitive training (CORE) and neurostimulation (tdcs) in the early stages of cognitive impairment. Aging Clinical and Experimental Research. 2022; 34(1):73-83.[DOI:10.1007/s40520-021-01912-0] [PMID]

Inagawa T, Yokoi Y, Narita Z, Maruo K, Okazaki M, Nakagome K. Safety and feasibility of transcranial direct current stimulation for cognitive rehabilitation in patients with mild or major neurocognitive disorders: A randomized sham-controlled pilot study. Frontiers in Human Neuroscience. 2019; 13:273. [DOI:10.3389/fnhum.2019.00273] [PMID]

Mudar RA, Chapman SB, Rackley A, Eroh J, Chiang H, Perez A, et al. Enhancing latent cognitive capacity in mild cognitive impairment with Gist Reasoning Training: A pilot study. International Journal of Geriatric Psychiatry. 2017; 32(5):548-55. [DOI:10.1002/gps.4492] [PMID]

Mudar RA, Nguyen LT, Eroh J, Chiang HS, Rackley A, Chapman SB. Event-related neural oscillation changes following reasoning training in individuals with mild cognitive impairment. Brain Research. 2019; 1704:229-40. [DOI:10.1016/j.brainres.2018.10.017] [PMID]

Monte-Silva K, Kuo MF, Hessenthaler S, Fresnoza S, Liebetanz D, Paulus W, et al. Induction of late LTP-like plasticity in the human motor cortex by repeated noninvasive brain stimulation. Brain Stimulation. 2013; 6(3):424-32. [DOI:10.1016/j.brs.2012.04.011] [PMID]

Mondino M, Jardri R, Suaud-Chagny MF, Saoud M, Poulet E, Brunelin J. Effects of fronto-temporal transcranial direct current stimulation on auditory verbal hallucinations and resting-state functional connectivity of the left temporo-parietal junction in patients with schizophrenia. Schizophrenia Bulletin. 2016; 42(2):318-26. [DOI:10.1093/schbul/sbv114] [PMID]

Carlson HL, Ciechanski P, Harris AD, MacMaster FP, Kirton A. Changes in spectroscopic biomarkers after transcranial direct current stimulation in children with perinatal stroke. Brain Stimulation. 2018; 11(1):94-103. [DOI:10.1016/j.brs.2017.09.007] [PMID]

Im JJ, Jeong H, Bikson M, Woods AJ, Unal G, Oh JK, et al. Effects of 6-month at-home transcranial direct current stimulation on cognition and cerebral glucose metabolism in Alzheimer’s disease. Brain Stimulation. 2019; 12(5):1222-8. [DOI:10.1016/j.brs.2019.06.003] [PMID]

Pallanti S, Grassi E, Knotkova H, Galli G. Transcranial direct current stimulation in combination with cognitive training in individuals with mild cognitive impairment: A controlled 3-parallel-arm study. CNS Spectrums. 2022; 28(4):489-94. [DOI:10.1017/S1092852922000979] [PMID]

Barbey AK, Colom R, Solomon J, Krueger F, Forbes C, Grafman J. An integrative architecture for General Intelligence and executive function revealed by lesion mapping. Brain. 2012; 135(4):1154-64. [DOI:10.1093/brain/aws021] [PMID]

Chiang MC, Barysheva M, Shattuck DW, Lee AD, Madsen SK, Avedissian C, et al. Genetics of brain fiber architecture and intellectual performance. The Journal of Neuroscience. 2009; 29(7):2212-24. [DOI:10.1523/JNEUROSCI.4184-08.2009] [PMID]

Yun K, Song IU, Chung YA. Changes in cerebral glucose metabolism after 3 weeks of noninvasive electrical stimulation of mild cognitive impairment patients. Alzheimer’s Research & Therapy. 2016; 8(1):49. [DOI:10.1186/s13195-016-0218-6] [PMID]

Suemoto CK, Apolinario D, Nakamura-Palacios EM, Lopes L, Leite RE, Sales MC, et al. Effects of a non-focal plasticity protocol on apathy in moderate alzheimer’s disease: A randomized, double-blind, sham-controlled trial. Brain Stimulation. 2014; 7(2):308-13. [DOI:10.1016/j.brs.2013.10.003] [PMID]

Duff K, Humphreys Clark JD, O'Bryant SE, Mold JW, Schiffer RB, Sutker PB. Utility of the RBANS in detecting cognitive impairment associated with alzheimer’s disease: Sensitivity, specificity, and positive and negative predictive powers. Archives of Clinical Neuropsychology. 2008; 23(5):603-12. [DOI:10.1016/j.acn.2008.06.004] [PMID]

Vitaliano PP, Breen AR, Russo J, Albert M, Vitiello MV, Prinz PN. The clinical utility of the Dementia Rating Scale for Assessing Alzheimer Patients. Journal of Chronic Diseases. 1984; 37(9-10):743-53. [DOI:10.1016/0021-9681(84)90043-2] [PMID]

Lau CI, Liu MN, Cheng FY, Wang HC, Walsh V, Liao YY. Can transcranial direct current stimulation combined with interactive computerized cognitive training boost cognition and gait performance in older adults with mild cognitive impairment? A randomized controlled trial. Journal of NeuroEngineering and Rehabilitation. 2024; 21(1):26. [DOI:10.1186/s12984-024-01313-0] [PMID]

IssueVol 19 No 1 (2025) QRcode
SectionReview Article(s)
DOI https://doi.org/10.18502/jmr.v19i1.17504
Keywords
Rehabilitation Cognitive dysfunction Transcranial direct-current stimulation Cognitive training Neuroscience

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Chu KY, Cheng KH. Effects of Transcranial Direct-Current Stimulation and Cognitive Training on Individuals with Mild Cognitive Impairment and Dementia: A Systematic Review and Meta-Analysis. jmr. 2024;19(1):1-13.