Review Article

6

Investigating the Effects of High-Arch and Flat Foot Deformities on Postural Control: A Systematic Review and Meta-Analysis

Parisa Sedaghati 💿, Fereshteh Kazemi Pakdel* 💿, Hamed Zarei 💿

Department of Corrective Exercises and Sports Injury, Faculty of Physical Education and Sport Sciences, University of Guilan, Rasht, Iran.

Citation Sedaghati P, Kazemi Pakdel F, Zarei H. Investigating the Effects of High-Arch and Flat Foot Deformities on Postural Control: A Systematic Review and Meta-Analysis. Journal of Modern Rehabilitation. 2023; 17(4):363-374. http://dx.doi. org/10.18502/jmr.v17i4.13884

doi http://dx.doi.org/10.18502/jmr.v17i4.13884

Article info:

Received: 16 Nov 2021 Accepted: 14 Feb 2022 Available Online: 01 Oct 2023

ABSTRACT

Introduction: High-arch and flat foot deformities can negatively impact an individual's performance in different situations. They may also balance as well as disturb postural control, which is essential for performing optimal routine and port activities, in addition to preventing injuries. This is a comparative meta-analysis of postural control in people with high-arch and flat foot deformities with normal feet.

Materials and Methods: This is a systematic review of articles published from 2004 to 2021 in Medline/PubMed, Embase/Scopus, LILACS, CINAHL, CENTRAL (cochrane central register of controlled trials), Web of Science, PEDro, and Google Scholar databases.

Results: The results revealed that the total balance score in people with high-arch and flat foot deformities was lower (P=0.001), compared to normal people. However, no significant difference was observed in the total balance of people with high-arch and flat foot deformities (P>0.05). Additionally, flat-foot people showed a weaker balance in the postural control test on a force plate, when compared to individuals with high-arch feet (P=0.001). Nevertheless, the results of dynamic balance were the same for all groups (P>0.05).

Conclusion: Our findings indicate that people with high-arch and flat foot deformities suffer from weaker postural control when compared to their normal peers. Moreover, flat-foot people showed lower scores on postural control tests on force plates, compared to subjects with high-arch feet, even though they had no significant differences for static and dynamic tests. There was no difference in the results of dynamic balance among the 3 groups.

Keywords:

Flat feet; High-arched foot; Postural control; Postural balance

* Corresponding Author:

Fereshteh Kazemi Pakdel

Address: Department of Corrective Exercises and Sports Injury, Faculty of Physical Education & Sport Sciences, University of Guilan, Rasht, Iran. Tel: +98 (937) 7869384

E-mail: fereshteh.kazemi.pakdel@gmail.com

Copyright © 2023 Tehran University of Medical Sciences. Published by Tehran University of Medical Sciences This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International license(https://creativecommons.org/licenses/by-nc/4.0/). Noncommercial uses of the work are permitted, provided the original work is properly cited.

363

1. Introduction

he lower extremity is responsible for bearing the body weight and handling forces that are generated as a result of frequent foot and ground reactions. Given its anatomic structure and position in the lower extremity, the foot has a pivotal role in transforming propulsive forces and walking. Powered by subtalar joints, the structure of the foot is highly flexible to adapt to uneven terrain and contributes to maintaining balance [1]. Several internal and external factors make body tissues vulnerable to injuries. Some internal factors include age, gender, weak muscular balance, and most importantly the natural posture of joints and organs [2]. The foot arch is necessary for the stability of the lower limb. One of the most important internal risk factors for lower extremity injury is the position of the arch of the foot. The foot arch is an architectural construct that combines all foot elements, including joints, ligaments, and muscles into an integrated system [3]. Because of the flexibility and curvature changes, the arch adapts to uneven surfaces and transfers body weight forces to the ground. This occurs in different situations and results from optimal mechanical advantages. The foot arch is essential for flexible walking [4]. Thus, paying attention to the foot arch as the sole interactive surface between the lower extremity and the ground is imperative.

Any deformities in the sole can lead to dysfunctionality in different situations. For instance, flat foot and high-arch deformities are likely to disturb peripheral data from proprioception [2]. Flat foot may be associated with extreme pronation of subtalar joints, which can lead to imbalance and hypermobility of foot joints. On the other hand, high-arch foot deformity is linked to extreme supination of subtalar joints. It may have negative impacts on postural control because of the low support surface of the foot in the weight-bearing mode [5]. The body comprises a set of flexible parts that maintain a vertical position in which the center of mass lies at a higher latitude than the foot. Thus, the body has a naturally low balance resistance [6]. Maintaining balance in a standing position is the measure for examining the lower extremity functionality [7]; however, the flat foot plays a significant role in postural control and foot arch functions to absorb ground forces [8]. Accordingly, high-arch and flat foot may experience unsuitability under weighed pressure and disturb postural control [9].

Postural stability is the ability to maintain the center of gravity of the body, correct orientation of the posture, and maintain an accurate connection between different organs while keeping the body in touch with the environment to do a certain task [10, 11]. As noted by Janda on body chain activity, people with lower-than-normal foot arch may develop pathomechanics or physiologic disorders [12]. They may initially suffer from inner rotation, such as pain in the knee, hip, or back. Side-effects of walking on tiptoes to compensate for a flat foot and stretching lead to various secondary ailments, such as foot deformity, pain in walking, pain in the heel, injuries, backache, and finger mallet that are rooted in flat foot [13].

Postural control is essential for daily routines, optimal sports activities, and prevention of injuries [14]. Thus, the present meta-analysis compares postural control in people with flat and high-arch foot deformities with their normal counterparts to see if they have any effects on postural control. This study also aims to find which deformity disturbs postural control the most.

2. Materials and Methods

The following databases were used to extract qualified papers from 2004 to February 25th, 2021: Medline/ PubMed, Embase/Scopus, LILACS, CINAHL, CEN-TRAL (cochrane central register of controlled trials), Web of Science, PEDro, and Google Scholar. The keywords were adopted from the MeSH framework, complemented by a manual search, along with a thorough paper analysis. The following keywords were searched: Balance control, center of pressure, or balance, or postural stability, or posture, or postural balance, or postural sway, or stability, or static balance, or static stance, or dynamic balance, pronation foot, or flexible flat foot, or rigid flat foot, or flat foot, or pes planus, supination foot, or cavus foot, or pes cavus, or arch height foot. The Persian equivalent of the keywords were also used to search in the following Persian databases: MAGIRAN, IranDoc, IranMedex, MedLib, and SID. The candidate papers that met the inclusion criteria were then summarized and used. A total of 25 papers were extracted.

The inclusion criteria were as follows: 1) Studies published in the Persian and English language and peer-reviewed; 2) All subjects were free from any orthopedic conditions that may affect balance; 3) Analyzing the effect of any type of flat feet or high-arched foot on postural control and dynamic balance; 4) Original studies with a cross-sectional design.

At first, papers were screened in terms of title and abstract to pick the articles concerned with balance in people with flat and high-arch foot. All English and Persian papers were closely studied. An assistant analyzed all the study abstracts. In the second phase, the papers were thoroughly studied by the researcher to compare balance in normal people with flat foot and high-arch foot subjects. Another researcher checked the final list to ensure all the papers were homogeneous. The descriptive summary of the papers was finally collected by an assistant and checked by the researcher. Disagreements were resolved by discussion. A sample table was used to extract the target population and compare the balance in 3 groups under analysis (Figure 1).

The exclusion criteria were as follows: Working with a population with no flat or high-arch foot; conference proceedings or reports, editorials, letters, case studies or series, abstract only, (systematic reviews and metaanalyses; studies performed on the elderly; studies with no concrete methodology; studies working with different foot deformities other than the ones in our systematic review; not studying balance; studies working with different functional tests.

Outcome measures

The desired variables were examined in the form of postural control and dynamic balance, namely limits of stability, sensory orientation, postural adjustments, anticipatory postural adjustments, transitions postural adjustments, stability, and verticality.

The risk of bias was evaluated by both reviewers using the Newcastle-Ottawa quality assessment scale (NOS). The checklist developed by Herzog, Alvarez-Pasquin [15] for cross-sectional studies was also employed. The NOS is an instrument that assesses the risk of bias by awarding a star for each answer that meets the criteria. A maximum of 10 stars can be obtained: 5 stars for selection, 3 stars for comparability, and 2 stars for outcome. Each given star projects a low risk of bias for this criterion [16]. The quality was assessed based on the Herzog, Álvarez-Pasquin [15] checklist as follows: Very good studies=9-10 stars, good studies=7-8 stars, satisfactory studies=5-6 stars, unsatisfactory studies=0 to 4 stars. NOS designers have established face and criterion validity, in addition to inter-rater reliability [17, 18].

Statistical analyses

The Hedge g for effect size was used for the metaanalysis (difference of the means in units of the pooled standard deviation). The heterogeneity was measured using I². In this case, the random effects model was used for I²>50 while the fixed effects model was used for I²<50. The Egger regression test of the intercept was used to examine the publication bias. Data analysis was performed using the Comprehensive Meta-Analysis software, version 2.

Figure 1. Flowchart for screening of articles

3. Results

A total of 754 papers were extracted from the online databases and 25 papers were found by manual search, from which 354 articles were selected for the present analysis after removing redundant titles. Furthermore, 298 titles were removed after screening the abstracts, and 56 papers were selected for the final analysis (Figure 1). Finally, 25 papers that compared postural control and balance of flat and high-arch foot people with their normal peers were selected to be studied (Table 1).

Quality of evidence

Based on the results of the NOS, studies that were systematically reviewed and meta-analyzed had desirable qualities as follows: 3 studies (12%)=very good (9 stars); 12 studies (48%)=good (8 stars); 6 studies (24%)=good (7 stars); and 4 study (16%)=satisfactory (5-6 stars). Accordingly, studies that were systematically reviewed and meta-analyzed are of good quality. The results are summarized in Table 1.

Figure 2 reveals the meta-analysis of flat-foot people compared to normal people. The I² index showed 76% heterogeneity; therefore, the random effect meta-analysis was applied. The effect size Hedge g was -0.25 at the 95% confidence interval (-0.43 and -0.07). The results of the meta-analysis showed that people with flat foot had a weaker balance compared to normal people (P=0.01); however, no difference was observed in the results of the dynamic test (P=0.16). The result of the Egger test was 0.051, showing no skewed distribution.

Figure 3 shows the meta-analysis of high-arch foot people compared to normal people. The I² index showed 73% heterogeneity; therefore, the random effect metaanalysis was applied. The effect size Hedge g was -0.47 at the 95% confidence interval (-0.72 and -0.23). The results of the meta-analysis showed that people with flat foot had a weaker balance compared to normal people (P=0.01); however, no difference was observed in the results of the dynamic test (P=0.30). The result of the Egger test was 0.84, showing no skewed distribution.

Figure 4 compares the meta-analysis of high-arch and flat-foot people. The I² index showed 76% heterogeneity; therefore, the random effect meta-analysis was applied. The effect size Hedge g was -0.9 at the 95% confidence interval (-0.33 and 0.14). The results of the meta-analysis showed no difference in the overall balance between the 2 groups (P=0.01). However, flat-foot people showed weaker postural control on force plates (P=0.01). The result of the Egger test was 0.41, showing no skewed distribution.

4. Discussion

The present study compared postural control and dynamic balance in people with flat and high-arch foot deformities with normal people. The results indicated that flat-foot people have a weaker balance compared to normal people. Similarly, high-arch people showed weaker balance compared to their normal peers. There was no difference in the postural control and dynamic balance between high-arch and flat-foot people. A detailed description of the results is given below.

Postural control and dynamic balance in flat foot and normal people

A range of different methods are usually applied to measure dynamic balance and postural control. Accordingly, a separate meta-analysis was applied in this research. The results revealed that flat-foot people had a weaker balance compared to normal people, even though there was no difference between them in terms of dynamic balance. Studies show that flat foot people's center of pressure in postural control test on force plates was on the inner side of the foot [31]. They concluded that these people experience a higher level of pressure on the inner side of the foot. However, no significant difference was reported between normal people and flat-foot people in the dynamic balance.

Studies showed that the displacement of the center of pressure was significantly correlated to the medial arch of the foot [19, 43]. The reason for the discrepancy in this research is likely attributed to the application of changes in the pressure center rather than the pressuremass center. Also, studies on people with the flat foot during single-leg balance motion showed that the extent of variations in both directions of anterior-posterior and medial-lateral in people with the flat foot was greater than in normal people [28, 29]. However, this increase in postural sway during the dynamic balance tests can help increase access balance in flat-foot people.

On the other hand, they showed a significant difference in static balance, reporting no significant correlation between static and dynamic tests [32]. Accordingly, the measure for evaluating dynamic balance was inappropriate. There is a significant difference between the two groups in a fixed standing position, but no significant difference exists between the 2 groups in dynamic balance The results of the meta-analysis show that flat-foot people have a weaker balance that may lead to athletic injuries and dysfunctionality in routine activities. Thus, there should be some corrective exercises to address this abnormality to prevent future possible injuries. Table 1. Review of results of balance in high-arch and flat-foot people

Author	Title	Structure and Sample Size	Age (y)	Dependent Variables	Measurement Tool	Results	NOS Scale
Hertel et al. (2002) [19]	Difference in postural control in one-leg standing posi- tion in normal people with different foot structures	Normal foot=23, flat foot=18, high-arch foot=19	19-23	High-arch foot balance	Force plate, one-leg standing position	People with high-arch foot experience a greater pressure distribution com- pared to normal people. However, there was no significant difference in the momentum of pres- sure distribution.	9
Cobb et al. (2004) [20]	Effects of ante- rior foot arch on posture	High-arch foot=20, low-arch foot=12	20-37	Postural control high- arch	Single-limb stance force plate, no- tolerance test, navicular drop test	No significant difference was observed between the study groups. The scores of postural control were higher with closed eyes.	8
Tsai et al. (2006) [21]	Comparing the effects of different foot structures on standing pos- tural position	Normal, su- pinated, and pronated foot=15, female=7, male=8	18-31	Foot struc- ture Postural control	Force plate, pres- sure distribution center device	Postural control was weak- er in the supinated and pronated foot compared to the normal foot.	9
Khodavisi et al. (2009) [22]	Effects of flat and high-arch foot deformities on dynamic bal- ance in female teenagers	Normal foot=20, flat foot=21 high-arch foot=19	12-14	High-arch foot dynamic balance	Navicular drop test, biodex bal- ance test	High-arch people have a weaker dynamic balance than normal and flat-foot people.	8
Ghasemi et al. (2011) [23]	Comparing dy- namic balance in men with different foot styles	Normal foot=30, flat foot=30, high-arch foot=30	23-27	Dynamic bal- ance	Star excursion balance test, na- vicular drop test	High-arch foot people exert greater pressure on the outer side of the foot and experience greater resistance in that region, while flat-foot people ex- ert more pressure on the inner side of the foot.	7
Ali et al. (2011) [24]	Dynamic pos- tural control in people with and without foot deformities	Normal foot=10, flat foot=10	19-21	High-arch foot static and dynamic balance	Biodex, one-foot test on a force plate	Compared to normal people, subjects with flex- ible flat foot have weaker dynamic balance.	8
Dabholkar et al. (2012) [25]	Using stark test to compare static and dy- namic balance in flat foot and normal people	Normal foot=60, flat foot=60	18-24	High-arch foot rotation balance	Star excursion balance test, na- vicular drop test, goniometer	Balance in people with flat foot is different from normal people.	9
Takata et al. (2013) <mark>[26]</mark>	Static balance on ground, ef- fects of flat foot and insoles	Normal foot=20 flat foot=20	19-23	High-arch foot pressure distribution center	Navicular drop test, force plate	A significance level of super fit insoles on the ground was lower than BMZ insoles.	8
Bazvand et al. (2014) [27]	Postural control in people with high-arch and flat foot deformities in walking	Normal foot=10, flat foot: 10, high-arch foot=10	20-28	High-arch foot, balance	Navicular drop test, force plate	There was a significant dif- ference in the secondary double-limb support in flat-foot people compared to normal and high-arch- foot people in interior- exterior and anterior- posterior directions. However, there was no difference in displace- ment mean and speed in double-limb and single- limb support.	7
Tahmasebi et al (2014) [28]	Static balance in people with flat foot	Normal foot=15, flat foot=15 high-arch foot=30	18-24	The pressure distribution center of the arch	Force plate, footprint	There was a significant dif- ference in the mean cen- ter of pressure distribution in static positions.	7

Author	Title	Structure and Sample Size	Age (y)	Dependent Variables	Measurement Tool	Results	NOS Scale
Kim et al. (2014) [29]	The difference in static and dy- namic balance in people with normal and flat	Normal foot=14, flat foot=14	20-27	High-arch foot static and dynamic balance	Navicular drop test, stark balance test, Y-balance test	People with flat foot showed differences in static but not dynamic balance. This may show no relationship between static and dynamic bal- ance.	8
Ghaderiyan et al. (2015) [30]	Displacement of the center of pressure in the sole of students aged 10-13 years with normal, flat and high-arch foot	Normal foot=30, flat foot=30, high-arch foot=30	10-13	Center of the pressure of the foot, high-arch foot	Pedoscope, foot scanner, Staheli index	There was a significant difference in the overall postural control. Anatomic structure affects the displacement of the center of pressure.	7
Faghihi et al. (2016) [31]	Effect of differ- ent degrees of flat foot on stat- ic and dynamic balance in male teenagers	Control=10, low navicu- lar drop=14, high navicu- lar drop=10	14-18	High-arch foot, static balance, dynamic bal- ance	Star excursion bal- ance test, navicu- lar drop test, Stark balance test	Flat foot significantly reduces balance, but higher degrees of flatness had no effects on reducing balance.	6
Khodavisi et al. (2009) [22]	Comparing Q angle and dynamic bal- ance in female athletes with flat and normal foot	Normal foot=30, flat foot=30	19-21	High-arch foot static and dynamic balance, Q angle	Force plate, star excursion balance test, navicular drop test, goni- ometer	There was a signific dif- ference in the Q angle be- tween the two groups, no difference was observed in the dynamic and static balance.	8
Panahi et al. (2016) [32]	Comparing dynamic and static balance in active female college students with different high-arch foot	Normal foot=30, flat foot=30, high-arch foot=30	18-25	Static balance, dynamic balance, high- arch foot	Stabilometer, na- vicular drop test	Static balance was weaker in people with flat and high-arch foot compared to normal people, but no difference was observed in the dynamic balance between them.	5
Kazemi et al. (2017) [33]	The relationship between Y test and pressure distribution device in evalu- ating dynamic balance in people with dif- ferent high-arch foot	Normal foot=28, flat foot=25, high-arch foot=25	18-25	High-arch foot balance pressure distribution center	Navicular drop test, Y-balance test, bal- ance distribution device	There was a significant relationship between the Y test and the pres- sure distribution device in evaluating dynamic balance in people with dif- ferent high-arch foot	7
Ashkezari et al. (2014) [34]	Effects of high-arch foot on static and dy- namic balance in male univer- sity athletes	Normal foot=30, flat foot=30, high-arch foot=30	18-25	High-arch foot dynamic balance pres- sure distribu- tion center	Navicular drop test, Y-balance test, pressure dis- tribution device	There was a significant difference in mean postural fluctuation in the standing position and dynamic balance in the three groups, though they showed no difference for the Y-balance test.	8
Hajirezaei et al. (2018) [35]	Comparing postural control, static balance, and dynamic balance in children with high-arch foot	Normal foot=15, flexible flat foot=15, structural flat foot=15, high-arch foot=15	10-13	High-arch foot, static balance dynamic bal- ance	Foot scan, stark balance test, star excursion balance test	Foot deformities, particu- larly structural flat foot, disturb postural control and balance and may in- crease the risk of injuries.	8

tional proto postura and ba people ferent I frGhasemi et al. (2018) [36]Kolasangiani et al. (2019) [37]Kolasangiani et al. (2019) [37]Huang et al. (2019) [38]Huang et al. postal and p function	I fatigue foo ocol on flexi al control foo alance of stru- e with dif- high-arch hig foot foo ating the s of body ure and ic activity No t muscles foo g single- hig anding in foo with foot atin and hy people ex in hal- abductor No postural foot ction in foo	ormal		Footprint, high-arch foot balance Muscle activ- ity, center of mass, pressure, distribution center	Foot scanner, Staheli index Electromyography, force plate, foot index structure	Fatigue significantly re- duces all the factors in the 4 study groups but there was a significant differ- ence between them. Before and after the fa- tigue protocol, there was a significant difference between the study groups. There was a significant difference between the pressure distribution center, center of mass, and internal gastrocne- mius, soleus, anterior tibialis, and pronus longus muscles.	6
Kolasangiani et al. (2019) [37] Got la people prona health Huang et al. (2019) [38] Huang et al. (2019) [38]	s of body ure and ic activity No t muscles for g single- hig anding in for with foot ation and hy people ex in hal- abductor No postural foot ction in for	ot=27, ,		ity, center of mass, pressure, distribution	force plate, foot	difference between the pressure distribution center, center of mass, and internal gastrocne- mius, soleus, anterior tibialis, and pronus longus	7
lucis a Huang et al. and p (2019) [38] func norma	abductor No postural foot: ction in foo						
	people	ormal =12, flat 2 ot=12	1-31	High-arch foot, muscle activity, pres- sure distribu- tion	Navicular drop test, electromyog- raphy, force plate	In all situations, the hal- lucis reflex in flat foot was significantly lower. Displacement in a pres- sure distribution center in anterior-posterior and interior-exterior direc- tions, and electromyogra- phy in single-limb stance were higher in flat-foot people.	8
Woźniacka et al. (2019) [39] ship b distr and po	relation-foo between hig arch foot, lig pressure foo ribution foo osture in hig of females (ormal ot=38, h-arch jone 2 ot)=23, 2 h-arch both et)=20	0-40	High-arch foot, pressure distribution center, pos- tural control	Force plate, insoles	There was no difference in overall burden between the left and right legs (women with symmetric arch) in groups 1 and 3, but in group 2, the right leg underwent a heavier burden (women with asymmetric arch)	8
fects c Fattahi et al. on ba (2020) [40] teens v arch	with high- hig	foot=22, h-arch 1 ot=12		Foot ex- amination of static and dynamic bal- ance	Observation, foot scanner, sharp- ened Romberg, ENC	Body weight is transferred by talus to the heel and then to the ground. Any arch deformity leads to disrupted routine activi- ties and impairs balance.	8
Mária et al. arch (2020) [41] grimai	balance of hig	ormal ht=105, (h-arch ot=72	6-14	The pressure distribution center, high- arch foot	Force plate, na- vicular drop test	There was no significant difference in 17 intervals and the frequency of initial parameters.	5
ity and activ Koshino et al. doub (2020) [42] to sin move people	ole-limb foot gle-limb foot=	ormal =10, flat 1 =8, high- 1 foot=9	.9-23 [†]	High-arch foot pressure distribution center	Foot posture index, pressure distribution device	There was no difference between the 3 groups in muscle activation time. However, postural stabil- ity and displacement of the pressure center in the initial 3 s differed significantly in the 3 study groups.	8

ModelGroup by	Study name	Outcome		Statist	ics for each study			Hedges's g and 95% Cl
Outcome			Hedges's Sta	ndard	LowerUpper			
			g e	rror Va	riancelimit limit Z	-Valuep	Value	
dynamic balance	Panahi et al	dynamic balance	0.36-	0.26	0.07 0.86- 0.15		0.16	+±
dynamic balance		I dynamic balance	0.05-	0.31	0.09 0.65- 0.55	0.16-	0.87	· · · · ·
dynamic balance	Kazemi et al	dynamic balance	0.10	0.27	0.07 0.43- 0.62	0.36	0.72	
dynamic balance	Faghihi et al	dynamic balance	0.92	0.45	0.20 0.03 1.81	2.03	0.04	
dynamic balance	Dabholkar et al	dynamic balance	0.76	0.26	0.07 0.24 1.27	2.86	0.00	
dynamic balance	Kim et al	dynamic balance	0.07	0.37	0.13 0.65- 0.79	0.20	0.84	
dynamic balance	Ashkezari et al	dynamic balance	0.47	0.26	0.07 -0.04 0.98	1.82	0.07	
Fixedlynamic balance			0.22	0.11	0.01 0.01 0.44	2.03	0.04	
Randondynamic balance			0.24	0.17	0.03 -0.09 0.58	1.41	0.16	
Postural control	Takata et al	Postural control	0.66-	0.32	0.10 1.280.03	2.07-	0.04	
Postural control	Hertel et al	Postural control	0.26-	0.31	0.10 0.87- 0.34	0.85-	0.40	
Postural control	Bahmani et al	Postural control	0.16-	0.36	0.13 0.86- 0.54	0.44-	0.66	
FixeePostural control			0.37-	0.19	0.04 0.740.00	1.97-	0.05	
RandonPostural control			0.37-	0.19	0.04 0.740.00	1.97-	0.05	
Postural control- AP		Postural control- AP	1.01-	0.27	0.07 1.54- 0.48-	3.74-	0.00	+
Postural control- AP	Koshino et al	Postural control- AP	1.43-	0.51	0.26 2.43- 0.43-	2.80-	0.01	
Postural control- AP	Kolasangiani et	alPostural control- AP	0.30-	0.27	0.07 0.83- 0.23	1.11-	0.27	
Postural control- AP	Tahmasebi et al	Postural control- AP	0.64-	0.36	0.13 1.36- 0.07	1.76-	0.08	
Postural control- AP	Tsai et al	Postural control- AP	1.31-	0.39	0.15 2.08- 0.54-	3.32-	0.00	
Postural control- AP	Takács et al	Postural control- AP	0.21-	0.15	0.02 0.51- 0.09	1.38-	0.17	
Postural control- AP	Ibrahim Ali et al	Postural control- AP	1.27-	0.47	0.22 2.19- 0.34-	2.68-	0.01	
Postural control- AP	Bazvand et al	Postural control- AP	4.61-	0.85	0.72 6.27- 2.95-	5.45-	0.00	
Postural control- AP	Ghasemi et al	Postural control- AP	0.72-	0.37	0.13 1.44- 0.00	1.95-	0.05	
FixeePostural control- AP			0.62-	0.10	0.01 0.82- 0.43-	6.27-	0.00	
RandonPostural control- AP			1.03-	0.25	0.06 1.52- 0.53-	4.06-	0.00	
Postural control-DLS-mm-AP	Huang et al-5	Postural control-DLS-mm-AP	0.23-	0.40	0.16 1.01- 0.54	0.59-	0.55	
Postural control-DLS-mm-AP	Huang et al-6	Postural control-DLS-mm-AP	0.21-	0.40	0.16 0.98- 0.57	0.52-	0.60	
Fixe@ostural control-DLS-mm-AP			0.22-	0.28	0.08 0.77- 0.33	0.79-	0.43	
RandonPostural control-DLS-mm-AP			0.22-	0.28	0.08 0.77- 0.33	0.79-	0.43	🔶
Postural control-DLS-S	Huang et al-2	Postural control-DLS-S	0.50	0.40	0.16 0.28- 1.29	1.25	0.21	
FixeePostural control-DLS-S			0.50	0.40	0.16 0.28- 1.29	1.25	0.21	🔶
RandonPostural control-DLS-S			0.50	0.40	0.16 0.28- 1.29	1.25	0.21	
Postural control-SLS-mm-AP	Huang et al-4	Postural control-SLS-mm-AP	0.92-	0.42	0.17 1.74- 0.11-	2.22-	0.03	
FixedPostural control-SLS-mm-AP			0.92-	0.42	0.17 1.74- 0.11-	2.22-	0.03	
RandonPostural control-SLS-mm-AP			0.92-	0.42	0.17 1.74- 0.11-	2.22-	0.03	
Postural control-SLS-mm-ML	Huang et al-3	Postural control-SLS-mm-ML	1.33-	0.44	0.19 2.19- 0.47-	3.03-	0.00	
Fixe@ostural control-SLS-mm-ML			1.33-	0.44	0.19 2.19- 0.47-	3.03-	0.00	
RandonPostural control-SLS-mm-ML			1.33-	0.44	0.19 2.19- 0.47-	3.03-	0.00	
Postural control-SLS-S	Huang et al-1	Postural control-SLS-S	0.21	0.40	0.16 0.56- 0.99	0.54	0.59	
Fixe@ostural control-SLS-S			0.21	0.40	0.16 0.56- 0.99	0.54	0.59	🔶
RandonPostural control-SLS-S			0.21	0.40	0.16 0.56- 0.99	0.54	0.59	🔶
FixedOverall			0.27-	0.06	0.00 0.39- 0.14-	4.18-	0.00	i + `
RandonOverall			0.25-	0.09	0.01 0.430.07	2.69-	0.01	
								-8.00 -4.00 0.00 4.00 8.00 Favours Flat Foot Favours Normal Foot

Figure 2. Results of meta-analysis of flat foot people compared to normal people

Abbreviations: AP: Anterior-posterior; ML: Medial-lateral; SLS-S: Single-leg standing (seconds); 95% CI: 95% confidence interval.

Model Group by Outcome	Study name	Outcome	Statistics for each study									Hedges's g and 95% Cl				
			Hedges's g	Standard error	Variance	Lower limit		Z-Value p	p-Value							
	Dynamic balance	Panahi et al-1	Dynamic balance	1.21-	0.28	0.08	1.75-	0.66-	4.34-	0.00	- I		1 -	- 1	1	
	Dynamic balance	Khodaveici et al	Dynamic balance	0.57-	0.32	0.10	1.20-	0.06	1.78-	0.07						
	Dynamic balance	Kazemi et al	Dynamic balance	0.50	0.28	0.08	0.04-	1.04	1.82	0.07				- 18-	,	
	Dynamic balance	Ashkezari et al-1	Dynamic balance	0.48	0.26	0.07	-0.02	0.99	1.87	0.06					<i>i</i>	
Fixed	Dynamic balance			0.15-	0.14	0.02	0.42-	0.13	1.04-	0.30				•		
Randon	Dynamic balance			0.19-	0.43	0.18	1.03-	0.65	0.45-	0.65				-		
	Postural control	Panahi et al-2	Postural control	1.76-	0.30	0.09	2.35-	1.17-	5.84-	0.00			-₽-	•		
	Postural control	Oleksy et al	Postural control	0.28-	0.27	0.07	0.82-	0.26	1.02-	0.31				-		
	Postural control	Ashkezari et al-2	Postural control	0.73-	0.26	0.07	1.25-	0.21-	2.78-	0.01						
	Postural control	Hertel et al	Postural control	0.74-	0.31	0.10	1.36-	0.12-	2.35-	0.02				-		
Fixed	Postural control			0.84-	0.14	0.02	1.12-	0.56-	5.88-	0.00				+		
Randon	Postural control			0.87-	0.31	0.10	1.47-	0.27-	2.82-	0.00			•	•		
	Postural control-AP	Ghaderian et al-1	Postural control-AP	1.01-	0.27	0.07	1.55-	0.48-	3.74-	0.00						
	Postural control-AP	Cobb et al-1	Postural control-AP	0.79-	0.37	0.14	1.52-	-0.07	2.14-	0.03						
	Postural control-AP	Koshino et al-1	Postural control-AP	0.00	0.44	0.19	0.86-	0.86	0.00	1.00						
	Postural control-AP	Ghasemi et al-1	Postural control-AP	0.11-	0.36	0.13	0.81-	0.59	0.31-	0.76						
	Postural control-AP	Bazvand et al-1	Postural control-AP	-0.02	0.43	0.18	0.86-	0.82	0.04-	0.97						
	Postural control-AP	Tsaiet al-1	Postural control-AP	0.82-	0.37	0.14	1.55-	-0.10	2.22-	0.03				-		
Fixed	Postural control-AP			0.57-	0.15	0.02	0.85-	0.28-	3.88-	0.00				•		
landon	Postural control-AP			0.52-	0.20	0.04	0.90-	0.14-	2.66-	0.01				•		
	Postural control-ML	Ghaderian et al-2	Postural control-ML	0.26-	0.26	0.07	0.76-	0.24	1.02-	0.31				-		
	Postural control-ML	Cobb et al-2	Postural control-ML	0.97-	0.38	0.14	1.71-	0.24-	2.59-	0.01			I –	- -1		
	Postural control-ML	Koshino et al-2	Postural control-ML	0.00	0.44	0.19	0.86-	0.86	0.00	1.00						
	Postural control-ML	Ghasemiet al-2	Postural control-ML	0.54-	0.36	0.13	1.25-	0.17	1.48-	0.14				-∎∔		
	Postural control-ML	Bazvand et al-2	Postural control-ML	-0.06	0.43	0.18	0.90-	0.78	0.13-	0.89						
	Postural control-ML	Tsaiet al-2	Postural control-ML	1.93-	0.43	0.19	2.78-	1.08-	4.45-	0.00				-		
Fixed	Postural control-ML			0.56-	0.15	0.02	0.85-	0.27-	3.77-	0.00			1	•		
Randon	Postural control-ML			0.61-	0.27	0.07	1.14-	-0.08	2.28-	0.02				٠		
	Postural control-SLS-S	Tsaiet al-3	Postural control-SLS-S	0.24	0.36	0.13	0.46-	0.94	0.68	0.49			1			
Fixed	Postural control-SLS-S			0.24	0.36	0.13	0.46-	0.94	0.68	0.49				-		
Randon	Postural control-SLS-S			0.24	0.36	0.13	0.46-	0.94	0.68	0.49				- ÷		
Fixed	Overall			0.49-	0.07	0.00	0.63-	0.35-	6.97-	0.00			1	• I		
landon	Overall			0.47-	0.13	0.02	0.72-	0.23-	3.80-	0.00			1			
											-8.00		.00	0.00	4.00	
												Envouro	Cavus Foot		Favours Normal Foot	

Figure 3. Results of meta-analysis of high-arch foot people compared to normal people

JMR

Abbreviations: AP: Anterior-posterior; ML: Medial-lateral; SLS-S: Single-leg standing (seconds); 95% CI: 95% confidence interval.

lodel Group by	Study name	Outcome		<u>s</u>	tatistics fo	r each s	study			Hedges's g and 95% CI					
Outcome			Hedges's g	Standard error	Variance	Lower limit		Z-Value	p-Value						
Danamic balance	Fattahi et al-1	Danamic balance	0.00	0.33	0.11	0.65-	0.66	0.01	0.99	- I	1		1		
Danamic balance	Panahi et al-3	Danamic balance	0.36	0.26	0.07	0.15-	0.86	1.40	0.16						
Danamic balance	Khodaveici et al	Danamic balance	0.48-	0.31	0.10	1.09-	0.14	1.52-	0.13						
Danamic balance	Kazemi et al	Danamic balance	0.44	0.28	0.08	0.10-	0.98	1.60	0.11			 			
Danamic balance	Ashkezari et al-1	Danamic balance	0.09	0.25	0.07	0.41-	0.59	0.36	0.72			-			
Fixed Danamic balance			0.12	0.13	0.02	0.12-	0.37	0.99	0.32						
andom Danamic balance			0.11	0.16	0.02	0.19-	0.42	0.72	0.47						
Postural control	Fattahi et al-2	Postural control	0.22-	0.34	0.11	0.88-	0.43	0.67-	0.50						
Postural control	Panahi et al-4	Postural control	2.26-	0.33	0.11	2.90-	1.62-	6.89-	0.00		-	-			
Postural control	Ashkezari et al-2	Postural control	-0.09	0.25	0.07	0.59-	0.41	0.37-	0.71			-			
Postural control	Hertel et al	Postural control	0.52-	0.33	0.11	1.17-	0.12	1.60-	0.11						
Fixed Postural control			0.69-	0.15	0.02	0.98-	0.39-	4.48-	0.00			•			
andom Postural control			0.77-	0.49	0.24	1.74-	0.20	1.56-	0.12			-			
Postural control-AP	Ghaderian et a⊩1	Postural control-AP	0.45-	0.26	0.07	0.96-	0.05	1.75-	0.08			-			
Postural control-AP	Koshino et al-1	Postural control-AP	1.14-	0.50	0.25	2.12-	0.16-	2.27-	0.02						
Postural control-AP	Ghasemi et al-1	Postural control-AP	0.70-	0.37	0.13	1.42-	0.02	1.91-	0.06						
Postural control-AP	Bazvand et al-1	Postural control-AP	3.46-	0.69	0.48	4.82-	2.09-	4.98-	0.00			_			
Postural control-AP	Tsaiet al-1	Postural control-AP	0.16-	0.36	0.13	0.86-	0.53	0.46-	0.65		_	-			
Fixed Postural control-AP			0.69-	0.17	0.03	1.01-	0.36-	4.14-	0.00			•			
andom Postural control-AP			1.01-	0.40	0.16	1.78-	0.23-	2.54-	0.01						
Postural control-ML	Ghaderian et al-2	Postural control-ML	0.43-	0.26	0.07	0.93-	0.08	1.66-	0.10						
Postural control-ML	Koshino et al-2	Postural control-ML	1.13-	0.50	0.25	2.11-	0.15-	2.26-	0.02			_			
Postural control-ML	Ghasemi et al-2	Postural control-ML	0.27-	0.36	0.13	0.97-	0.43	0.74-	0.46						
Postural control-ML	Bazvand et al-2	Postural control-ML	2.25-	0.56	0.31	3.34-	1.16-	4.04-	0.00			_			
Postural control-ML	Tsaiet al-2	Postural control-ML	0.67-	0.37	0.13	1.38-	0.05	1.82-	0.07						
Fixed Postural control-ML			0.67-	0.16	0.03	0.99-	0.35-	4.12-	0.00						
andom Postural control-ML			0.83-	0.29	0.08	1.39-	0.26-	2.87-	0.00			•			
Postural control-SLS-S	Tsaiet al-3	Postural control-SLS-S	1.21	0.39	0.15	0.45	1.97	3.12	0.00				- 1		
Fixed Postural control-SLS-S			1.21	0.39	0.15	0.45	1.97	3.12	0.00			_ 			
andom Postural control-SLS-S			1.21	0.39	0.15	0.45	1.97	3.12	0.00						
Fixed Overall			0.34-	0.07	0.01	0.49-	0.20-	4.67-	0.00			•	-		
andom Overall			0.10-	0.12	0.01	0.33-	0.14	0.82-	0.41			- H			
										-8.00	-4.00	0.00	4.00		
											Favours Flat Foot		Favours Cavus Foot		

Figure 4. Comparison of meta-analysis of high-arch and flat-foot people

JMR

Abbreviations: AP: Anterior-posterior; ML: Medial-lateral; SLS-S: Single-leg standing (seconds); 95% CI: 95% confidence interval.

Postural control and dynamic balance in higharch foot and normal people

The results of the dynamic and static tests revealed that high-arch foot people had a weaker static balance compared to normal people, even though no difference was observed between them in terms of dynamic balance. Studies on postural control reported that the center of pressure in postural control tests on force plates in high-arch foot people was on the outer side of the foot, indicating that these people experience a higher level of pressure on the outer inner side of the foot. This may lead to athletic injuries and dysfunctionality in routine activities, and cause postural abnormalities as well as orthopedic disorders in the long term. The indifference to the results of the dynamic balance test in these people is likely because most of the studies used the Y test as a measure for this purpose; however, this needs further research. It is highly suggested that this deformity be treated to avoid further postural control disorders and other future complexities.

The high-arch foot is limited by physiological restrictions in the range of motion of the subtalar and mid-tarsal joint, and there is no support mechanism between the inside of the foot sole and the postural control measuring device [19]. The feedback of sensory information during joint movements depends on the sensory information of the joint receptors (including ligaments and joint capsules) and various information received from the dermal receptors and the mechanical receptors of the muscles [27]. Therefore, a high-arch foot reduces the skin sensory information received from the structure of the sole, compared to normal people [44]. This is because there is a lesser area of the support surface in the high-arch foot concerning the ground or the postural control measuring device [40]. This leads to a weaker postural control mechanism in people with a high-arch foot structure.

Postural control and dynamic balance in higharch and flat-foot people

The results of the dynamic and static tests revealed no significant difference between the two groups. Similarly, there was no significant difference between them in terms of the total balance index. However, the results of the postural control of force plates showed that flatfoot people had a weaker balance compared to high-arch people. This is a reliable measure and the results are accurate. Studies also report that high-arch people slightly touch the force plate and maintain a more balanced state in a standing position. Thus, they experience a lesser displacement in the center of pressure, enabling them to have better postural control. Nevertheless, further studies are required to reach more accurate and certain results. Flat and high-arch foot deformities lead to postural control disorders and need to be catered for to be treated.

Since postural control is maintained within a closed movement chain and depends on the integrated feedback

of the movements of the hip, knee, and ankle joints, any impairment in each of these segments or disruption in the mechanical power and strength of each of these joints causes impairment in sending afferent sensory information to the central nervous system, thereby impairing the postural control [45]. Hence, in the feet abnormalities, the segments and joints should receive attention plus neuromuscular coordination exercises. The latter part is important because, in addition to correcting the abnormalities, we could also observe improvement in postural control in these people. Exercise protocols aimed at correcting foot abnormalities cause the activation of motor neurons in a group of muscles and joints for performing an action and its adaptation to the environmental context [46]. Also, neuromuscular coordination exercises cause enhanced coordination and integration of motor units, co-contraction of agonist muscles, and increased inhibition of antagonist muscles. This eventually leads to improved neuromuscular responses and hence enhanced static and dynamic balance [47].

5. Conclusion

The results of our review paper reveal that flat and high-arch people have weaker postural control compared to normal people. They also show that flat-foot people had weaker postural control measured on force plates. However, no difference was observed between the two groups in terms of static and dynamic balance. There was also no difference in dynamic balance between normal people and subjects with flat foot and high-arch deformities. To achieve more accurate results, further studies are required.

Ethical Considerations

Compliance with ethical guidelines

There were no ethical considerations to be considered in this research.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-forprofit sectors.

Authors' contributions

All authors equally contributed to preparing this article.

Conflict of interest

The authors declared no conflict of interest.

References

- [1] Tasoojian E, Dizaji E, Memar R, Alizade F. [The comparison of plantar pressure and ground reaction force in male and female elite karate practitioners (Persian)]. Journal of Paramedical Sciences & Rehabilitation. 2016; 5(3):42-54. [Link]
- [2] Tsung BYS, Zhang M, Fan YB, Boone DA. Quantitative comparison of plantar foot shapes under different weightbearing conditions. 2003; 40(6):517-26. [DOI:10.1682/ JRRD.2003.11.0517] [PMID]
- [3] Tong JW, Kong PW. Association between foot type and lower extremity injuries: Systematic literature review with metaanalysis. Journal of Orthopaedic & Sports Physical Therapy. 2013; 43(10):700-14. [DOI:10.2519/jospt.2013.4225] [PMID]
- [4] Dadgar H, Sahebozamani M. [Evaluation of sole arech index and non-contact lower-extremity injury rates in male karateka (Persian)]. Journal of Research in Rehabilitation Sciences. 2011; 7(1):11-8. [Link]
- [5] Sánchez C, Alegre LM. Acute changes in foot morphology and plantar pressures during barefoot running. International Journal of Medicine & Science of Physical Activity & Sport. 2020; 20(78):211-26. [Link]
- [6] Ladha N, Jain H. Effect of pronated and supinated foot postures on static and dynamic balance in dancers. Indian Journal of Physiotherapy & Occupational Therapy. 2021; 15(1):100-6. [Link]
- [7] Graham ME. Extra-Osseous Talotarsal Joint Stabilization (EOTTS) in the treatment of hyperpronation syndromes. In: Badekas T, editor. Update in management of foot and ankle disorders. London: IntechOpen; 2018. [DOI:10.5772/intechopen.76234]
- [8] Viseux F, Lemaire A, Barbier F, Charpentier P, Leteneur S, Villeneuve P. How can the stimulation of plantar cutaneous receptors improve postural control? Review and clinical commentary. Neurophysiologie Clinique. 2019; 49(3):263-8. [DOI:10.1016/j.neucli.2018.12.006] [PMID]
- [9] Fu GQ, Wah YC, Sura S, Jagadeesan S, Chinnavan E, Judson JPE. Influence of rearfoot alignment on static and dynamic postural stability. International Journal of Therapy And Rehabilitation. 2018; 25(12):628-35. [DOI:10.12968/ ijtr.2018.25.12.628]
- [10] Koura GM, Elimy DA, Hamada HA, Fawaz HE, Elgendy MH, Saab IM. Impact of foot pronation on postural stability: An observational study. Journal of Back and Musculoskeletal Rehabilitation. 2017; 30(6):1327-32. [DOI:10.3233/BMR-170886] [PMID]

- [11] Irani S, Abbaszadeh-Amirdehi M, Hosseini SR, Sum S, Matlabi H, Mirasi S. The effect of head and neck stabilization exercises on dynamic balance in the elderly with forward head posture. Journal of Modern Rehabilitation. 2021; 16(1):9-16. [Link]
- [12] Barghamadi M, Abdollahpourdarvishani M, Jafarnezhadger A, Dehghani M. [Comparison of plantar pressure variables during walking in male and female (Persian)]. Journal of Anesthesiology and Pain. 2019; 10(3):81-90. [Link]
- [13] Hadad A, Ganz N, Intrator N, Maimon N, Molcho L, Hausdorff JM. Postural control in karate practitioners: Does practice make perfect? Gait & Posture. 2020; 77:218-24. [DOI:10.1016/j. gaitpost.2020.01.030] [PMID]
- [14] Sedaghati P, Hosseini AH, Zarei H. Effect of exercise programs on fear of falling in multiple sclerosis: A systematic review and meta-analysis of randomized clinical trials. Caspian Journal of Neurological Sciences. 2021; 7(4):227-35. [DOI:10.32598/CJNS.7.27.7]
- [15] Herzog R, Álvarez-Pasquin MJ, Díaz C, Del Barrio JL, Estrada JM, Gil Á. Are healthcare workers' intentions to vaccinate related to their knowledge, beliefs and attitudes? A systematic review. BMC Public Health. 2013; 13:154. [DOI:10.1186/1471-2458-13-154] [PMID]
- [16] Newcastle O. Newcastle-Ottawa: Scale customized for cross-sectional studies. 2018. [Link]
- [17] Hartling L, Hamm M, Milne A, Vandermeer B, Santaguida PL, Ansari M, et al. Validity and inter-rater reliability testing of quality assessment instruments [Internet]. Agency for Healthcare Research and Quality (US). 2012. Report No.: 12-EHC039-EF. [PMID]
- [18] Hartling L, Milne A, Hamm MP, Vandermeer B, Ansari M, Tsertsvadze A, et al. Testing the Newcastle Ottawa Scale showed low reliability between individual reviewers. Journal of Clinical Epidemiology. 2013; 66(9):982-93. [PMID]
- [19] Hertel J, Gay MR, Denegar CR. Differences in postural control during single-leg stance among healthy individuals with different foot types. Journal of Athletic Training. 2002; 37(2):129-32. [PMID]
- [20] Cobb SC, Tis LL, Johnson BF, Higbie EJ. The effect of forefoot varus on postural stability. Journal of Orthopaedic & Sports Physical Therapy. 2004; 34(2):79-85. [DOI:10.2519/ jospt.2004.34.2.79] [PMID]
- [21] Tsai LC, Yu B, Mercer VS, Gross MT. Comparison of different structural foot types for measures of standing postural control. Journal of Orthopaedic & Sports Physical Therapy. 2006; 36(12):942-53. [DOI:10.2519/jospt.2006.2336] [PMID]
- [22] Khodavisi H, Anbarian M, Farahpour N, Sazvar A, Jalalvand A. [The effect of structural abnormalities of flat feet on dynamic balance in adolescent girls (Persian)]. Journal of Sports Science Research. 2009; 2(23):99-112. [Link]
- [23] Ghasemi V, Rajabi R, Alizadeh M, Dashti Rostami K. [The comparison of dynamic balance in males with different foot types (Persian)]. Sport Sciences and Health Research. 2011; 3(1):5-20. [Link]
- [24] Ali MM, Mohamed MS. Dynamic postural balance in subjects with and without flat foot. Bulletin of Faculty of Physical Therapy. 2011; 16(1):7-11. [Link]

- [25] Dabholkar A, Shah A, Yardi S. Comparison of dynamic balance between flat feet and normal individuals using star excursion balance test. Indian Journal of Physiotherapy and Occupational Therapy. 2012; 6(3):33-7. [Link]
- [26] Takata Y, Matsuoka S, Okumura N, Iwamoto K, Takahashi M, Uchiyama E. Standing balance on the ground-the influence of flatfeet and insoles. Journal of Physical Therapy Science. 2013; 25(12):1519-21. [DOI:10.1589/jpts.25.1519] [PMID]
- [27] Bazvand M, Mosavi SK, Mi'mar R, Sadeghi H. [Dynamic postural comparison during gait analysis in men with pes cavus and pes planus (Persian)]. Journal of Mazandaran University of Medical Sciences. 2014; 24(116):161-71. [Link]
- [28] Tahmasebi R, Karimi MT, Satvati B, Fatoye F. Evaluation of standing stability in individuals with flatfeet. Foot & Ankle Specialist. 2015; 8(3):168-74. [DOI:10.1177/1938640014557075] [PMID]
- [29] Kim JA, Lim OB, Yi CH. Difference in static and dynamic stability between flexible flatfeet and neutral feet. Gait & Posture. 2015; 41(2):546-50. [DOI:10.1016/j.gaitpost.2014.12.012] [PMID]
- [30] Ghaderiyan M, Ghasemi GA. [Comparison the rate of movement foot center of pressure on boy students 10-13 years old with normal, planus and cavus foot types (Persian)]. Journal for Research in Sport Rehabilitation. 2016; 4(7):43-53. [Link]
- [31] Faghihi H, Nazari H. [The effect of different degrees of flat feet on static and dynamic balance of adolescent boys (Persian)]. Journal of Applied Sports Physiology. 2016; 12(23):153-60. [DOI:10.22080/JAEP.2016.1316]
- [32] Panahi M, Babakhani F, Seidi F. [Comparison of static and dynamic balance of physically active college women with different foot arch heights (Persian)]. Journal of Research in Rehabilitation Sciences. 2016; 12(2):88-96. [Link]
- [33] Kazemi Pordanjani F, Seidi F. The relationship between Y Test Results and pressure distribution system in estimating dynamic balance of those with different foot arch heights (Persian)]. Journal of Exercise Science and Medicine. 2018; 10(1):19-34. [Link]
- [34] Ashkezari MH, Seidi F, Alizadeh MH. [Effect of the medial longitudinal arch height of the foot on static and dynamic balance of male collegiate athletes (Persian)]. Scientific Journal of Rehabilitation Medicine. 2014; 6(2):1-10. [Link]
- [35] Hajirezayi P, Ghasemi G, Arghavani H, Sadeghi-Demneh E. [Comparison of postural control factors, static and dynamic balance in students with different foot arches (Persian)]. Journal of Paramedical Sciences & Rehabilitation. 2019; 8(2):69-76. [Link]
- [36] Ghasemi G, Arghavani H, Hajirezayi P. [Effect of functional fatigue protocol on postural control and balance in people with different foot arches (Persian)]. Scientific Journal of Rehabilitation Medicine. 2018; 7(3):113-24. [Link]
- [37] Kolasangiani A, Mantashloo Z, Salehi S, Moradi M. Examination of postural control of body and the onset time of electrical activity of selected ankle muscles during single-leg landing in subjects with pronated and normal foot. Journal of Modern Rehabilitation. 2019; 13(2):79-86. [DOI:10.32598/10.32598/ JMR.13.2.79]

- [38] Huang TH, Chou LW, Huang CY, Wei SW, Tsai YJ, Chen YJ. H-reflex in abductor hallucis and postural performance between flexible flatfoot and normal foot. Physical Therapy in Sport. 2019; 37:27-33. [DOI:10.1016/j.ptsp.2019.02.004] [PMID]
- [39] Woźniacka R, Oleksy Ł, Jankowicz-Szymańska A, Mika A, Kielnar R, Stolarczyk A. The association between high-arched feet, plantar pressure distribution and body posture in young women. Scientific Reports. 2019; 9(1):17187. [DOI:10.1038/ s41598-019-53459-w] [PMID]
- [40] Fattahi A, Koreili Z, Ameli M. [Instantaneous effect of insole on the balance of adolescents with flat foot and pes cavus (Persian)]. Journal of Sport Biomechanics. 2020; 6(1):44-53. [DOI:10.32598/biomechanics.6.1.6]
- [41] Mária T, Gergely N, Rita KM. Does pes planus influence standing balance in elementary school-age children? Biomechanica Hungarica. 2020; 12(1):7-16. [DOI:10.17489/biohun/2019/1/01]
- [42] Koshino Y, Samukawa M, Chida S, Okada S, Tanaka H, Watanabe K, et al. Postural stability and muscle activation onset during double-to single-leg stance transition in flat-footed individuals. Journal of Sports Science & Medicine. 2020; 19(4):662-9. [PMID]
- [43] De Cock A, Vanrenterghem J, Willems T, Witvrouw E, De Clercq D. The trajectory of the centre of pressure during barefoot running as a potential measure for foot function. Gait & Posture. 2008; 27(4):669-75. [DOI:10.1016/j.gaitpost.2007.08.013] [PMID]
- [44] Cote KP, Brunet ME, Gansneder BM, Shultz SJ. Effects of pronated and supinated foot postures on static and dynamic postural stability. Journal of Athletic Training. 2005; 40(1):41-6. [PMID]
- [45] Le Mouel C, Brette R. Mobility as the purpose of postural control. Frontiers in Computational Neuroscience. 2017; 11:67. [DOI:10.3389/fncom.2017.00067] [PMID]
- [46] Hayes KC. Biomechanics of postural control. Exercise and Sport Sciences Reviews. 1982; 10:363-91.[DOI:10.1249/00003677-198201000-00011] [PMID]
- [47] Moon D, Jung J, editors. Effect of incorporating shortfoot exercises in the balance rehabilitation of flat foot: A randomized controlled trial. Healthcare. 2021; 9(10):1358. [DOI:10.3390/healthcare9101358] [PMID]