#### **Review Article**

# The Effect of Blue Light Blocking Filters on Human Visual System Performance and Individual Characteristics: A Narrative Review

## Mehrdad Sadeghi\*, Saeed Rahmani, Mohammad Ghasemi Brumand, Parvin Dibajnia

Department of Optometry, School of rehabilitation, Shahid Beheshti University of Medical Sciences, Tehran, Iran

# \*Corresponding author: Mehrdad Sadeghi, MSc

Department of Optometry, School of Rehabilitation, Shahid Beheshti University of Medical Sciences, Tehran,

Iran

**Tel:** +98 21 77561408

Email: sadeghiop88@yahoo.com

## **ORCID ID:**

Mehrdad Sadeghi: 0000-0002-0763-2436 Saeed Rahmani: 0000-0001-6330-4405

Mohammad Ghasemi Brumand: 0000-0003-2372-3861

Parvin Dibajnia: 0000-0001-7972-8536

## **Article info:**

Received: 23 Apr 2025 Accepted: 22 Nov 2025

**Citation:** Sadeghi M, Rahmani S, Ghasemi Brumand M, Dibajnia P. The Effect of Blue Light Blocking Filters on Human Visual System Performance and Individual Characteristics: A Narrative Review. Journal of Modern Rehabilitation. 2026;20(2):?-?

Running title: Blue-control filters in spectacle: a review

#### **Abstract**

Blue light blocking filters are recognized as important tools for reducing the harmful effects of light emitted from digital screens. This narrative review, based on a comprehensive search of databases including PubMed, Web of Science, Cochrane, Medline, Scopus, Google Scholar, and ScienceDirect, examines studies published between 2010 and 2024 and evaluates the effects of these filters on eye health, sleep quality, and related functions. Findings indicate that the use of these filters can help reduce visual discomfort and improve individual factors such as circadian rhythm and sleep quality. Moreover, the relationship between blue light blocking filters and the reduction of sleep disorders such as insomnia, anxiety, migraines, photophobia, mania, computer vision syndrome, and accommodative problems has been investigated. The effects of these filters on retinal structure and function, their potential to reduce the risk of age-related macular degeneration (ARMD), and their influence on contrast sensitivity, color perception, and motion detection have also been discussed. Some studies suggest that these filters may affect contrast sensitivity; however, further research is needed to clarify these effects. The use of these filters is recommended for individuals who are continuously exposed to digital devices. Although these lenses do not significantly impact overall color perception, they may cause difficulties in distinguishing colors, particularly within the blue spectrum. This study, as a narrative review, provides a comprehensive overview of the effects of blue light blocking filters and emphasizes the need for further research in this area.

Keywords: blue light blocking, blue light filtering, partially blue light filtering, circadian clock, color perception

#### **Introduction:**

Blue light, a portion of the visible light spectrum with wavelengths approximately between 400 and 500 nanometers, has attracted considerable attention due to its high energy and widespread sources, including digital screens and sunlight [1,2,20]. Its effects on human health extend far beyond its well-known role in regulating circadian rhythms. While blue light helps synchronize physiological activities during the day, prolonged and inappropriate exposure, especially during late hours of the day and at night can have widespread and multifaceted consequences on various health aspects, including sleep, mental health, vision, and retinal health [3,4,5,6].

Blue light, particularly at the shorter wavelength end, can damage sensitive eye tissues such as the retina [7,8,17]. Under certain conditions, it is associated with issues like digital eye strain, sleep disturbances, migraines, and even mental health disorders [61]. For this reason, the use of blue light blocking filters has emerged as an effective method to reduce exposure to harmful blue light [10,11]. These filters, available as eyeglass lenses or screen overlays, reduce the transmission of specific blue light wavelengths and can alleviate symptoms of eye fatigue and vision problems [21].

Among these, partial blue blocking filters, marketed as "Blue Control"have been introduced. These filters selectively block a portion of blue light at a lower intensity. Designed to preserve natural color perception and visual quality, especially in low-light conditions and to maintain circadian rhythms, studies have shown these filters improve visual comfort and have less impact on color perception compared to full blue blocking filters [32].

One of the most significant effects of continuous blue light exposure is the disruption of sleep quality and quantity. Blue light suppresses the production of melatonin, the hormone that plays a key role in regulating the sleep-wake cycle, resulting in delayed sleep onset and reduced depth and quality of sleep [24,60]. This issue is particularly important in sensitive groups such as pregnant women, with research indicating that nighttime light exposure can decrease sleep duration in the first and third trimesters [93]. Blue light-induced sleep disturbances are also linked with increased anxiety and severity of insomnia, and in some cases, can exacerbate symptoms of mental disorders such as mania in individuals with bipolar disorder. Research suggests that blue light can even act as a psychological stimulant, influencing mood regulation and impacting psychiatric conditions [9,58,59].

Despite potential benefits, debates persist regarding the long-term effects of these filters, and further research is needed to determine their precise impact on eye health, sleep quality, and cognitive function [86]. Additionally, the role of blue light in eye health and its relationship with diseases such as age-related macular degeneration (ARMD) remains a challenging topic [26,68,78].

From a neurological perspective, blue light is known to contribute to the onset and exacerbation of migraines and photophobia (61). Individuals with migraines often exhibit heightened sensitivity to blue light, which can trigger headache attacks. Blue light overstimulates visual neural pathways, increasing pain and light sensitivity in these patients. In this context, using blue light blocking filters, especially in bright environments or while using digital screens, can help reduce photophobia and migraine symptoms.

The problems caused by blue light are not limited to sleep and mental health disorders but also significantly affect vision [97]. A common issue among digital screen users is Computer Vision Syndrome (CVS), characterized by symptoms such as dry and tired eyes, blurred vision, eye pain, and accommodative disorders [34]. Prolonged blue light exposure stimulates and fatigues retinal photoreceptors and excessively strains the eye's accommodation system, leading to these symptoms. Accommodation disorders caused by blue light exposure can result in temporary blurred vision, difficulty focusing, and rapid eye fatigue [55,22,23]. Therefore, using blue light blocking lenses and filters is an important strategy to reduce the severity of CVS and enhance visual comfort, warranting new insights regarding these lenses.

However, it is important to note that filtering blue light can affect visual performance. Scotopic contrast sensitivity (vision in low light) appears particularly impacted by blue light reduction because short blue wavelengths are near the peak sensitivity of retinal rod cells (506 nm). Consequently, reducing blue light entering the eye can decrease contrast sensitivity and detail recognition in darkness by about 5 to 24 percent, an issue especially important for older adults who naturally have diminished night vision [43]. Nevertheless, in bright environments and situations like night driving, blue light filtering lenses can reduce glare and increase contrast, potentially improving visual performance according to some studies.

Another concern is the impact of these filters on color perception. Research indicates that prolonged and repeated use of blue light blocking lenses can alter color accuracy, especially for warm and cool colors. This issue is critical for professionals highly sensitive to precise color discrimination, such as graphic designers and surgeons [39,42].

Regarding retinal health, chronic exposure to high-energy blue light can cause oxidative damage to light-sensitive retinal cells and accelerate macular tissue degeneration [66]. This process leads to age-related macular degeneration (ARMD), a leading cause of blindness in the elderly. Intraocular lenses and blue light filtering glasses have been proposed as protective measures to safeguard the retina and prevent ARMD progression, especially in high-risk populations. This review examines relevant studies to derive accurate conclusions from their findings [67,68].

Blue light's effects are not limited to humans; light pollution is an increasingly important concern. Light pollution refers to the excessive artificial light in the environment, which disrupts human biological rhythms and adversely affects ecosystems and public health [99]. Some studies implicate blue light in increased risks of neurological damage and certain cancers. Countries like the Czech Republic and the United Kingdom have implemented regulations to limit light pollution in response to these concerns.

Additionally, nighttime blue light exposure, especially for shift workers, can cause severe sleep disturbances and negatively impact cardiovascular health, glucose metabolism, and blood pressure regulation [103]. Treatments such as controlled light therapy, melatonin regulation, and improving sleep quality may help mitigate these adverse effects.

It has been indicated that blue-light–filtering and UV-blocking intraocular lenses (IOLs) were compared for their effects on non-visual, melanopsin-mediated functions. The study noted improvements in alertness and sleep after cataract surgery, with no significant difference between the two lens types, suggesting that the main benefit comes from restored light exposure rather than lens filtering [73,76].

balance is essential in managing light exposure. While blue light is an important stimulator and regulator of health, improper and ill-timed exposure during sensitive night hours leads to a wide range of sleep, psychological, and visual problems. Therefore, targeted use of blue light blocking filters combined with awareness of exposure timing and intensity is a key strategy for maintaining public health. This narrative review examines the current perspectives on these blue light filtering lenses, aiming to clarify their benefits and limitations and provide new insights into their role.

#### **Methods**

A comprehensive search was performed across multiple databases, including PubMed, Scopus, Web of Science, Cochrane, Medline, ScienceDirect, and Google Scholar, encompassing studies published between 2008 and 2025 with a focus on the most recent and relevant research based on selected keywords such as "blue light blocking", "blue light filtering", "partially blue light filtering", "circadian clock", and "color perception". In this narrative review, all studies related to the primary topic were included, with inclusion criteria requiring articles to be published in English and address the subject under investigation. Various types of publications, including original research articles, systematic reviews, and narrative reviews relevant to the topic, were considered without restrictions on study design, target population, or study location, provided they offered information pertinent to the subject matter. To ensure the quality and relevance of selected studies, exclusion criteria were established whereby articles unrelated to the research topic, published in languages other than English, lacking sufficient and relevant information, of low methodological quality, or without full-text availability were omitted, and duplicate articles or preprints were removed if a full published version existed to prevent data duplication. Given that the blue spectrum of visible light, due to its higher energy, can influence human performance and the visual system, blue light blocking filters are commonly employed to mitigate these effects; therefore, keywords related to these filters were used in the search. Since these filters affect visual system and eye function, all relevant aspects were explored, including their impact on sleep and anxiety associated with insomnia, effects on migraine, photophobia, mania, computer vision syndrome (CVS), accommodative disorders, and their influence on contrast sensitivity, color perception, and motion detection, along with their potential role in preventing retinal damage, with both blue blocking filters and partial blue light blocking filters discussed in detail in separate subtitles later in the review.

## Full vs partial blue blocking (LEDs and screens)

In recent years with the widespread use of digital devices such as smartphones computers and smart televisions concerns regarding the potential effects of blue light on visual health and the human circadian rhythm have increased considerably [36,54]. Blue light is a portion of the visible spectrum with wavelengths ranging from approximately 400 to 500 nanometers and contributes significantly to brightness image sharpness and color perception. However the high-energy segment of this range particularly between 415 and 455 nanometers can under prolonged exposure stimulate the retina induce visual fatigue suppress melatonin secretion and ultimately disrupt normal sleep cycles [71,76].

Modern displays are based on LED LCD or OLED technologies each of which emits light in different ways. In LED and LCD displays white light is typically generated by combining blue LED emission with a yellow phosphor layer whereas in OLED displays independent blue green and red diodes produce light directly. In both technologies the blue component constitutes a substantial portion of the emitted spectrum making blue-light management essential for maintaining visual comfort and ocular health. To address this two main types of optical filters have been developed: blue-blocking filters which block nearly all blue wavelengths and blue-control filters which selectively attenuate only part of the blue spectrum [48].

Blue-blocking filters work by absorbing or reflecting almost all wavelengths below approximately 480 nanometers and effectively minimize blue-light transmission. While this can reduce the potential for photochemical stress on the retina it also disturbs white balance and shifts color perception toward warmer tones such as yellow or orange. Consequently these filters tend to reduce color accuracy and overall visual fidelity and are generally recommended for nighttime use or low-light conditions where precise color rendering is less critical [42,43,44].

In contrast blue-control filters are spectrally engineered to selectively reduce high-energy blue light in the range of 415–455 nanometers while allowing transmission of wavelengths between 470 and 490 nanometers. This approach preserves white balance and color accuracy while limiting potentially harmful blue-light exposure. As a result blue-control filters provide a balanced compromise between visual protection and image quality making them more suitable for everyday use in monitors laptops smartphones and optical lenses designed for digital environments.

Recent scientific research indicates that the actual impact of blue-light filters on sleep quality and ocular health remains inconclusive. A study conducted among healthy pregnant participants found no statistically significant difference in sleep outcomes between those using fully blue-blocking glasses and those using partially blue-blocking blue-control lenses. The authors suggested however that future research focusing on individuals with sleep disturbances or circadian rhythm disorders may yield different results indicating potential subgroup-specific effects [72,80,83].

Another comprehensive study on digital eye strain, defined as the development or exacerbation of visual and ocular symptoms specifically related to digital screen use, reported a high prevalence among digital device users. Despite this high prevalence current evidence shows no substantial benefit of blue-light-blocking interventions in alleviating symptoms of digital eye strain. The main mechanisms contributing to this condition include reduced blink rate and completeness uncorrected refractive errors binocular vision anomalies and increased cognitive demand during near-focus digital tasks. Furthermore differences in luminance glare and display positioning compared with non-digital visual tasks can exacerbate these symptoms [88].

Based on the best available evidence effective management of digital eye strain involves comprehensive optical correction for appropriate working distances conscious blinking ergonomic adjustments to screen brightness and position regular visual breaks and maintenance of adequate ocular surface lubrication. The use of artificial tears warm compresses humidified environments and nutritional supplementation particularly with omega-3 fatty acids and antioxidant compounds has been shown to provide more consistent relief than blue-light-blocking filters.

In summary while both blue-blocking and blue-control filters can reduce the intensity of high-energy visible light current scientific evidence does not conclusively support their effectiveness in improving sleep quality or significantly reducing digital eye strain. The overall efficacy of these filters likely depends on multiple factors including an individual's visual health ambient lighting conditions duration of screen exposure and sensitivity to blue light. Therefore blue-light filters should be regarded as part of a comprehensive visual health strategy rather

than a standalone solution. Proper visual ergonomics appropriate lighting scheduled breaks and maintaining ocular surface hydration remain the most effective and evidence-based approaches for minimizing the adverse effects associated with prolonged digital screen use.

## Sleep and anxiety in insomnia

Circadian rhythms play a fundamental role in regulating human physiological and psychological processes and disruption of these rhythms can lead to problems such as insomnia, anxiety, depression, cognitive decline, and metabolic disorders [69,70]. Among the environmental factors affecting these rhythms, blue light with a wavelength of approximately 446 to 477 nanometers has the greatest impact because it directly inhibits the secretion of melatonin from the pineal gland, thereby regulating the sleep-wake cycle. Exposure to blue light at night, especially from artificial sources such as LED screens, smartphones, and computers, reduces melatonin secretion, resulting in insomnia, anxiety, and mood changes. In recent years, the use of blue light blocking lenses and glasses has gained attention as a safe, non-pharmacological intervention to improve sleep quality and reduce anxiety. These lenses filter out short wavelengths of light, preventing stimulation of melanopsin-sensitive retinal cells, thereby increasing melatonin secretion and improving circadian rhythms [71,72,76].

Clinical studies have shown that wearing amber-tinted glasses in the evening and at night, particularly in individuals suffering from insomnia and delayed sleep phase disorder, improves sleep quality, accelerates sleep onset, and enhances mood [57]. Emerging evidence indicates that the benefits of these lenses extend beyond sleep, also affecting cognitive and psychological functioning. In a randomized controlled clinical trial, the use of amber glasses in individuals with insomnia symptoms led to significant improvements in working memory and cognitive processing speed, elevating their neuropsychological performance from below average to normal levels. These findings suggest that reducing nighttime blue light exposure not only enhances sleep quality but also helps restore cognitive functions impaired by insomnia. Furthermore, multiple studies have examined the efficacy of blue light blocking glasses in mood disorders [94]. Trials involving patients with bipolar disorder, major depressive disorder, and postpartum depression have reported symptom reductions, including decreased mania and partial mood improvement associated with the use of these glasses [59]. The likely mechanism behind these effects resembles dark therapy, where reduced nighttime light exposure stabilizes circadian rhythms and modulates mood. Despite positive findings, some studies have reported inconsistent results, and the extent of these lenses' effects on melatonin secretion, sleep quality, and cognitive performance varies among individuals. Additionally, long-term use of lenses with strong spectral filtering may negatively impact color perception, contrast sensitivity, and vision in low-light conditions. The actual efficacy of these lenses depends heavily on filter strength, duration of use, ambient lighting conditions, and individual characteristics.

current scientific evidence suggests that blue light blocking glasses and lenses can serve as a simple, low-cost, non-pharmacological intervention to improve sleep, reduce anxiety, enhance cognitive performance, and regulate mood in individuals with sleep disorders such as insomnia and delayed sleep phase disorder. However, to more precisely determine their effectiveness, underlying physiological and psychological mechanisms, and potential long-term effects, further well-designed, large-scale controlled studies are essential [45].

## Migraine, photophobia, and mania

Another important application of blue light blocking filters is in treating conditions such as migraine, photophobia, and bipolar mania [25,58,59]. By reducing stimulation of intrinsically photosensitive retinal ganglion cells that are sensitive to blue light, these filters help decrease the frequency and severity of migraine attacks, ease photophobia symptoms, and improve mania symptoms. Migraine is a common neurological disorder characterized by increased light sensitivity during attacks which significantly affects quality of life and social functioning. A study with ten migraine patients showed that wearing blue light blocking glasses called Blue Cut for Night during the night for four weeks reduced the number of headache days without causing significant side effects. These glasses reduce stimulation of retinal cells and proved effective in lessening migraine episodes [61]. Blue light also damages corneal surface cells. An in vitro study found that blue light causes phototoxicity in primary human corneal epithelial cells but blue light blocking shields protect these cells from harm. This protection is especially important for high-risk groups such as people with dry eye, contact lens users, and the elderly [64].

In bipolar disorder and mania, blue light blocking glasses have shown promise as a simple, affordable, and safe supplementary treatment in clinical trials. They reduce blue light exposure during evening and nighttime hours, helping regulate the body's circadian rhythm and reduce manic symptoms. Clinical results indicate significant improvements in mood and motor activity, including in older adults, along with better sleep quality. Use of these glasses is linked to longer total sleep time, fewer nighttime awakenings, and improved sleep efficiency.

blue light blocking filters have wide applications in protecting the eyes and reducing symptoms in light-sensitive conditions like migraine, photophobia, and mood disorders. They offer a useful complementary therapy in these areas [58,59].

#### CVS and accommodative discomfort

Numerous studies have examined the effects of blue-control filters on visual performance, eye fatigue, and accommodative function. The results suggest that using blue-light filters can improve certain aspects of visual comfort and reduce fatigue under specific conditions. For example, one study found that working with laptops equipped with blue-light filters enhanced reading speed and data entry accuracy, although it had no significant effect on accommodative response or pupil size. Conversely, other research has indicated that in healthy adults, blue-control filters do not produce notable changes in visual symptoms associated with digital device use, and their prescription for improving accommodation or reducing visual discomfort is not scientifically justified [22,23].

Recent investigations have explored lenses with a slight additional positive power combined with blue-violet light filters. These studies found that lenses with a +0.40 diopter addition produced no negative effects on convergence or accommodative ability and showed a similar reduction in digital asthenopia symptoms compared to standard single-vision lenses. This suggests that the main relief in visual discomfort may result from reduced accommodative demand rather than simply blocking blue light [23].

In certain cases, blue-control filters may also provide benefits beyond reducing eye strain. A clinical trial on migraine patients showed that wearing Blue Cut for Night (BCN) glasses, which reduce stimulation of intrinsically photosensitive retinal ganglion cells, led to fewer headache days over a four-week period without any adverse effects. These findings indicate that optical filters can help alleviate light sensitivity and potentially reduce migraine frequency [61].

Spectroscopic research has also shown that the actual intensity of blue light emitted from digital displays is far below the threshold considered hazardous to ocular tissues. In a laboratory analysis of an iPhone 12 Mini, an iPad Pro, and a MacBook Pro, the peak emission wavelengths were found between 445 and 455 nanometers, posing no photobiological threat to the retina. Moreover, the amount of blue light received by the human eye in one minute of outdoor sunlight exposure exceeds that from approximately 24 hours of digital screen use. Despite these reassuring results, researchers emphasize the need for further studies to clarify the real-world efficacy of blue-blocking lenses and coatings.

Clinical evidence also highlights that prolonged use of smartphones may exacerbate computer vision syndrome and dry eye disease even more than computer use. The duration of exposure, inappropriate lighting, and lack of regular visual breaks are major contributors to these symptoms. Therefore, eye care professionals recommend not only the prudent use of blue-light filters but also adherence to ergonomic principles, including regular breaks, optimal screen brightness, and proper viewing distance [53].

Overall, current scientific evidence suggests that blue-control filters can modestly reduce visual fatigue, improve comfort in certain conditions, and assist in managing light sensitivity in disorders such as migraine. However, their definitive impact on accommodative performance and prevention of visual discomfort has not yet been fully established. Furthermore, the actual intensity of blue light from digital devices appears too low to cause physiological damage to ocular structures. Thus, blue-control filters should be viewed as part of a broader strategy for maintaining visual health rather than as a substitute for good visual habits and ergonomics. Appropriate lighting, regular rest periods, limited continuous screen time, and the use of natural ambient light remain the most effective ways to protect accommodative function and prevent digital eye strain [33].

## Contrast, color, and motion perception

Research indicates that the use of blue-light-blocking lenses can influence contrast sensitivity under specific conditions. In particular, reductions in contrast sensitivity are more pronounced under low-light (scotopic) conditions or in the presence of glare. Red and gray lenses produce minor reductions in contrast sensitivity, whereas yellow or orange lenses can enhance contrast sensitivity under these conditions. These findings suggest that the effects of blue-light-blocking lenses on visual performance depend on ambient lighting conditions and lens color. Despite the slight reductions in contrast sensitivity under certain conditions, these lenses can protect the eyes from photochemical damage caused by blue light, and their subjective benefits in certain patients, such as those with age-related macular degeneration, may be partly due to modest improvements in contrast sensitivity [42,43,44].

Regarding color vision, evidence shows that blue-light-blocking lenses generally do not impair an individual's ability to detect colors or perform color vision tests. However, the reduction in blue light transmission can cause subtle differences in color perception, particularly in detecting blue hues. Long-term studies have indicated that continuous use of blue-light-blocking filters may slightly reduce color contrast sensitivity in low-light conditions although these effects are not clinically significant for most individuals with normal vision. Blue-tinted lenses may produce minor negative effects on color discrimination but do not meaningfully affect contrast sensitivity in young adults. Evaluating the balance between protective effects and visual performance impacts of these lenses is important [51,52].

In terms of motion perception, studies have shown that blue-light-blocking lenses can reduce the perceived speed of moving stimuli. Experiments using both colored and achromatic stimuli found that perceived speed decreased by 6 to 20 percent when viewed through blue-light-blocking lenses, with the greatest reduction observed in lenses that block the most blue light. These findings indicate that while blue-light-blocking lenses can reduce exposure to potentially harmful blue light, there are unintended effects on critical visual behaviors such as motion perception, which should be considered for long-term use and activities requiring precise visual motion judgment [63].

# Retina, and ARMD (Age-related macular degeneration) protection

Blue-violet light with wavelengths between 400 and 500 nanometers is potentially phototoxic to the retina, and prolonged exposure can lead to structural and functional damage. Animal studies have shown that blue light induces apoptosis and necrosis in the retinal pigment epithelium, damages photoreceptors, and affects retinal ganglion cells. In addition, exposure to blue light reduces the dendritic branching of layer 5 pyramidal neurons in the visual cortex. These findings suggest that blue light can have long-term effects on visual function and disrupt neuronal remodeling in the visual cortex. In these studies, the use of blue-light-blocking lenses partially reduced retinal cell damage and neuronal changes, providing a degree of protection against blue light exposure [68,78].

In humans, exposure to blue light is particularly relevant after cataract surgery because the natural lens absorbs a significant portion of short-wavelength light with age, providing a degree of retinal protection [14]. After replacement with a clear intraocular lens, transmission of short-wavelength light to the retina increases, which could theoretically raise the risk of retinal damage and accelerate the progression of age-related macular degeneration (ARMD) [107,108].

Blue-light-filtering intraocular lenses are designed to reduce transmission of short-wavelength light, aiming to protect the retina and potentially slow or prevent the development of age-related macular degeneration [49]. Laboratory and animal studies have shown that these lenses can prevent phototoxic damage to the retinal pigment epithelium and retinal neurons [19]. However, epidemiological and clinical studies in humans have produced mixed results, and no study has definitively demonstrated that blue-light-filtering lenses prevent or slow the progression of age-related macular degeneration. Most independent studies indicate that these lenses do not significantly impair color vision, contrast sensitivity, or overall visual function, though some report minor changes in scotopic vision or circadian rhythm, which are generally of limited clinical significance [29].

Based on current evidence, blue-violet light poses a potential risk to the retina, and blue-light-filtering lenses may offer partial protection. However, their precise role in preventing age-related macular degeneration remains unclear. Laboratory and animal studies indicate real risk and elucidate mechanisms of damage, but human studies, including epidemiological data and clinical trials, have yet to confirm a definitive link between the use of blue-

light-filtering lenses and reduced progression of age-related macular degeneration. Therefore, their use should be considered with an awareness of current evidence limitations and tailored to the individual clinical context. Future research should include large-scale clinical trials to assess the true protective effects of these lenses.

In Table 1, a collection of key and influential articles related to the present topic has been compiled. The table provides the titles and essential bibliographic details of each study, along with a concise description of their main research focus and objectives. This structure enables readers to review, compare, and analyze previous studies more efficiently, thereby facilitating a clearer understanding of existing research pathways, scientific trends, and remaining gaps in the literature.

**Table 1: The summary of previous publish papers:** 

| Title, Author, and Date                                                                                                         | Study<br>Objective                                                                                                                                                                                                                                               | Interventio<br>n (Sample<br>Size,<br>Outcome<br>Measure,<br>Study<br>Duration)                                                                                                                                                                                                                                                                                           | Conclusion                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Effects of a blue-blocking screen filter on accommodative accuracy and visual discomfort [22]  Beatriz Redondo Et al., May 2020 | determine the effects of using BB filters on the dynamics of the accommod ative response and pupil size and perceived levels of visual discomfort, while performin g a 30-min reading task at a close distance in subjects who routinely use electronic devices. | N=19 (22.0 _ 2.7 years) read two 30-min passages on a computer screen placed at 50 cm, either while using a commerciall y available B-B filter or without any filter on two different days. The magnitude and variability of both the accommodat ive response and pupil size were dynamically measured for 60 s using the WAM-5500 open field autorefracto meter at 4–5, | Our data showed that the use of a B-B filter had no effect on accommoda tive dynamics or visual symptomat ology. Based on these findings, there is no support for the prescription of B-B filters to attenuate the visual symptoms and signs associated with the use of electronic devices in healthy young adults. |

Digital asthenopia: blue-blocking lenses and + 0,40D additional power in the near zone, for eye strain, accommodation and convergence functions [23]

Aline Cristina Fioravanti Lui Alionis1 et al., Apr 12, 2022

9- 10, 14-15, 19–20, 24–25, and 29-30 min into the trial. The perceived levels of visual discomfort were also obtained. Evaluate N=49 The +0.40blue-violet Randomized D lenses light filter study in have no and cross-over negative additional design impact on conducted convergenc power of +0.40 D in on 49 e or loss of accommoda the near volunteers (age, 29 ± tion zone ophthalmi 5.5 years; power. The +0.40 D and c male: lenses, on female, control SV convergen 18:31). Each lenses had a subject wore similar ce, accommod test (+0.40 impact D in the near ative attenuating functions, and symptoms zone) and control of DA. lenses symptoms of digital (regular asthenopia single (DA). vision) for 4 weeks in randomized order. Both lenses had a selective blue-violet light filter. A baseline measuremen t was taken with the subjects' current updated glasses. Accommoda tion amplitude (AA) near point of convergence (NPC) were

measured binocularly with the **RAF** ruler. DA was evaluated by a questionnair e. Effects of blue-light blocking spectacle lens on computer-induced asthenopia Compared N = 40Digital [34] to standard asthenopia Α spectacle prospective baselineind Aline Cristina lenses uced clinical by Fioravanti Lui Alionis (non-bluestudy was computer July 21, 2020 blocking), carried out was bluewith 49 significantl do blocking reduced volunteers lenses bluewho spent by reduce more than 4 light hours a day blocking symptoms spectacle of using a asthenopia computer lenses blue induced by (age, wearing. computer?  $29.07 \pm 5.50$ male: female=18:3 1). Digital asthenopia was assessed using questionnair All participants completed the questionnair with standard spectacles non blueblocking (baseline) and after 4 weeks with a blueblockin lens (Crizal® PrevenciaT M) wearing. The normality of data was assessed using the Shapiro-Wilk test.

measured values were compared using the nonparametric Wilcoxon test and pvalues less than 0.05 were considered statistically significant. Do Blue-blocking Lenses Reduce Eye Strain From Extended Screen Time? To N=120Blueblocking A Double-Masked investigate A total of Randomized Controlled Trial [109] if blue-120 lenses did blocking symptomati not alter Sumeer Singh et al., 2021 lenses are c computer signs or effective in users were symptoms of eye strain reducing randomly with the ocular assigned (1:1) into a signs and computer "positive" or symptoms use relative of "nega-tive" to standard advocacy clear lenses. strain arm (ie, a associated Clinician with clinician advocacy computer either type had no use. advocating bearing on clinical or not advocating outcomes. for the intervention via prerecorded video). **Participants** were further subrandomized (1:1)to receive either clear (placebo) or blueblocking specta-cles. All participants were led to believe they had received active an

Changes in

intervention. **Participants** performed a 2-hour computer task while wearing their assigned spectacle intervention. Blue-blocking filters do not alleviate signs and symptoms of digital eye strain This study N = 23The B-B Twentyfilter did not [38] assessed the shortthree healthy alter OO Hind Saeed Alzahrani young adults term muscle Et al., 2020 effects of a  $(22.9 \pm 3.2)$ activity or years of age) commercia visual performed lly symptomat available, two reading ology tasks from a B-B filter significantl computer y during the on orbicularis screen with execution of oculi (OO) or without a 30-min B-B filter on muscle reading task activity two different in and days. OO asymptomat symptoms muscle ic subjects. of digital activity was These eye strain recorded by findings during the surface support the electromyog execution idea that B-B filters do of a 30raphy 4–5, min 9–10, 14not reading 15, 19–20, attenuate tas. 24-25 and signs and 29-30 min symptoms into the trial. digital of **Participants** eye strain. reported their perceived levels of visual discomfort and activation before and after completing the reading task.

| Effect of blue-blocking lenses on colour contrast sensitivity [40]             | The study    | N=5           | Our results  |
|--------------------------------------------------------------------------------|--------------|---------------|--------------|
|                                                                                | investigate  | Five healthy  | suggest that |
| Manon Baldasso                                                                 | d the effect | participants  | while        |
| Et al.,2020                                                                    | of a         | (one man      | reducing     |
|                                                                                | number of    | and four      | blue light   |
|                                                                                | commercia    | women),       | potentially  |
|                                                                                | lly          | aged          | minimises    |
|                                                                                | available    | between 23    | the harmful  |
|                                                                                | blue-        | and 39        | effect of    |
|                                                                                | blocking     | years, were   | blue hazard  |
|                                                                                | lenses on    | recruited for | light, blue- |
|                                                                                | colour       | this study.   | blocking     |
|                                                                                | contrast     | Crizal        | lenses can   |
|                                                                                | sensitivity  | Prevencia     | unintention  |
|                                                                                | in normal    |               | ally reduce  |
|                                                                                | individuals  | Blue          | colour       |
|                                                                                | under low    | Guardian      | contrast     |
|                                                                                | and high     | (Opticare),   | sensitivity, |
|                                                                                | contrast     | and Blu-      | particularly |
|                                                                                | stimulus     | OLP           | at low light |
|                                                                                | conditions.  | (GenOp)       | levels.      |
|                                                                                |              | lenses were   |              |
|                                                                                |              | examined in   |              |
|                                                                                |              | this study in |              |
|                                                                                |              | comparison    |              |
|                                                                                |              | to a control  |              |
|                                                                                |              | lens (clear   |              |
|                                                                                |              | lens without  |              |
|                                                                                |              | blue-         |              |
|                                                                                |              | filtering     |              |
|                                                                                |              | coating).     |              |
| Effect of blue cut glasses on color discrimination and contrast sensitivity in | То           | N=80          | Blue-cut     |
| young emmetropes [42]                                                          | evaluate     | A total of 80 | glasses      |
|                                                                                | the effects  | emmetropes    | negatively   |
| Mujeeb Ur Rehman                                                               | of blue-cut  | aged 18–30    | impact       |
| Et al.,2024                                                                    | glasses on   | years with    | color        |
|                                                                                | visual       | 6/6 vision    | discriminati |
|                                                                                | functions,   | were          | on while     |
|                                                                                | specificall  | included,     | showing no   |
|                                                                                | y color      | while         | significant  |
|                                                                                | discrimina   | individuals   | effect on    |
|                                                                                | tion (CD)    | with ocular   | contrast     |
|                                                                                | and          | or systemic   | sensitivity  |
|                                                                                | contrast     | conditions    | in young     |
|                                                                                | sensitivity  | affecting     | emmetropes   |
|                                                                                | (CS), in     | vision were   | . These      |
|                                                                                | young        | excluded.     | findings     |
|                                                                                | emmetrop     | Visual        | highlight    |
|                                                                                | es.          | functions     | the          |
|                                                                                |              | were          | importance   |
|                                                                                |              | assessed      | of           |
|                                                                                |              | using the     | evaluating   |
|                                                                                |              | Ishihara test | the trade-   |
|                                                                                |              | for color     | offs         |
|                                                                                |              | blindness,    | between the  |
|                                                                                |              | Pelli-        | protective   |

| Modelling the effect of commercially available blue-blocking lenses on visual and non-visual functions [46]  Hind S Alzahrani et al.,2019 | This study measured the spectral transmitta nce of BBLs and evaluated their effect on blue perception , scotopic vision, circadian | Robson chart for contrast sensitivity, and FM 100 Hue test for color discriminati on. Participants were tested with and without blue-cut glasses in randomized sessions to avoid fatigue or memorization effects N=17 Seven different types of BBLs from six manufacture rs and untinted control lenses with three different powers | and visual effects of blue-cut glasses.  BBLs can provide some protection to the human eye from photochemical retinal damage by reducing a portion of blue light that may |
|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                           | BBLs and evaluated their effect on blue perception , scotopic vision,                                                              | manufacture rs and untinted control lenses with three different powers (+2.00 D, -2.00 D and Plano) were evaluated. The whiteness index of                                                                                                                                                                                          | from photochemi cal retinal damage by reducing a portion of blue light that may affect visual and non- visual performanc es, such as those critical to                    |
|                                                                                                                                           |                                                                                                                                    | BBLs used in this study was calculated using Commission International de l'Eclairage (CIE) Standard Illuminates D65, and CIE 1964                                                                                                                                                                                                   | scotopic<br>vision, blue<br>perception,<br>and<br>circadian<br>rhythm.                                                                                                    |

The Long-Term Effect of Blue-Light **Blocking Spectacle** Lenses on Adults' Contrast Perception [52]

Yan Lian et al., 2022

Standard with a 2\_ Observer. To N=144In total, 144 evaluate the longhealthy term effect adults aged 24.70 (±4.32 two different years) were degrees of recruited to blue-light this blocking randomized (BB) controlled spectacle trial. The participants lenses on adults' were randomly contrast divided into perception under three groups various and used lighting three conditions. different spectacle lenses (15% BB: 15% blueblocking spectacle lenses; 30% BB: 30% blueblocking spectacle lenses; RC: regular clear lenses serving control). Contrast sensitivity under four light conditions (scotopic and photopic, both with/without glare) was measured

> using standard clinical tests at baseline, 1 month. months and

of

Wearing

blue-light

blocking

clinically

effect

term

contrast

under

or

glare.

perception

scotopic or

photopic

conditions,

with

significant

adults' long-

on

lens had no

6 months of use.

| Prophylactic     | We           | N=10          | BCN glass,    |
|------------------|--------------|---------------|---------------|
| Treatment for    | developed    | Ten patients  | which         |
| Patients with    | Blue Cut     | •             | reduces       |
| Migraine Using   | for Night    | migraine      | light         |
| Blue Cut for     | (BCN)        | participated  | stimulation   |
| Night Glass [61] | glass,       | in the study. | to ipRGCs,    |
|                  | which        | Each          | was           |
| Muneto Tatsumoto | reduces      | participant   | suggested to  |
| Et al.,2023      | light        | was made to   | be a tool for |
|                  | stimulatio   | wear BCN      | reducing      |
|                  | n to         | glasses only  | graine        |
|                  | intrinsicall | at night for  | attacks.      |
|                  | У            | four weeks.   |               |
|                  | photosensi   | The number    |               |
|                  | tive         | of headache   |               |
|                  | continental  | days and      |               |
|                  | ganglion     | Headache      |               |
|                  | cells        | Impact Test-  |               |
|                  | (ipRGCs),    | 6 values      |               |
|                  | photorecep   | before and    |               |
|                  | tors that    | after using   |               |
|                  | can lead to  | the BCN       |               |
|                  | exacerbati   | glasses were  |               |
|                  | on of        | compared.     |               |
|                  | migraine     |               |               |
|                  | attacks.     |               |               |

#### **Discussion**

Blue light, a part of the visible spectrum with wavelengths between 400 and 500 nanometers, has attracted a lot of attention in recent years due to its high energy content and is naturally emitted from sunlight, as well as from digital displays, LED lighting devices, and mobile phones. Although this light plays an important role in regulating the body's circadian rhythm and maintaining alertness, prolonged or untimely exposure to it, especially in the late hours of the day and night, can have significant consequences for general health and vision. Due to its higher energy, the effects of blue light go beyond sleep disorders and include problems such as eye fatigue, visual impairment, migraines, and even retinal damage [1,2,5,7].

According to the studies reviewed, the use of blue light-blocking filters has become popular as a preventive measure to reduce the potentially harmful effects of this light. These filters are designed as optical coatings on eyeglass lenses, protective layers of displays, or as optical technologies in intraocular lenses, and their main purpose is to reduce the transmission of short, high-energy wavelengths of blue light to prevent excessive stimulation of the retina and visual fatigue. Filters that completely block blue light, known as Blue Blocking lenses or blue cut blocks, usually significantly reduce the transmission of wavelengths below about 450 nanometers. These filters are able to minimize the intensity of radiation in the high-energy range of blue light and prevent the occurrence of photochemical stress in retinal cells [8]. However, their use may lead to changes in color perception and reduced color accuracy, since the absorption of these wavelengths causes the color of the image to shift towards yellow and orange. Therefore, the use of these types of filters is usually recommended in specific situations, such as high-light work environments or when using electronic devices at night.

In contrast, partial blue blockers, known in the market under the brand name BlueControl lenses, have a more balanced design. These lenses reduce the more energetic part of blue light in the range of about 420 to 455 nm, while allowing the passage of longer wavelengths, 460 to 480 nm, to preserve physiological functions related to blue light, such as circadian rhythm regulation and daily alertness response. Due to this feature, BlueControl lenses have been able to balance eye protection with maintaining color accuracy, and for this reason have found widespread use in everyday eyewear, especially for long-term users of digital devices [32].

BlockControl coatings reduce surface reflection by creating a selective absorption spectrum and filter out only a portion of the blue light. In addition to reducing eye fatigue and increasing visual comfort, this type of design does not cause a noticeable change in the color or brightness of the image [87]. Along with these lenses, screen protectors are also produced with similar technology. These protectors, which are placed directly on the surface of the monitor, tablet or mobile phone, reduce direct radiation to the eyes by absorbing or reflecting part of the blue light in the range of 420 to 460 nm. However, the amount of blue light absorption in them is usually less than that of precision optical lenses and filters out about 10 to 20 percent of the blue light. In terms of vision quality and color perception, research has shown that full filters usually cause a color shift towards warmer tones and a decrease in color accuracy, while partial filters have little effect on color perception and are more suitable for everyday use [42,43,44]. In terms of the impact on sleep and circadian rhythm, both types of filters can improve sleep quality by reducing the inhibition of melatonin secretion, but the effect of the full filter has been reported to be stronger in this regard. However, continuous use during the day may cause drowsiness or reduced concentration, so it is more logical to use the full filter at night and the partial type during the day [81,98,102]. In terms of retinal protection and prevention of age-related macular degeneration, animal studies show that both types of filters are able to reduce oxidative damage to retinal cells to some extent, but human evidence has not shown a significant difference between them. Full-blocking filters seem to provide more protection, but this protection is associated with a slight decrease in contrast sensitivity and color accuracy, while the partial type provides a better balance between retinal health and visual quality. In terms of visual quality and color perception, research has shown that full filters usually cause a color shift towards warmer tones and a decrease in color accuracy, while partial filters have little effect on color perception and are more suitable for everyday use. In terms of the effect on sleep and circadian rhythm, both types of filters can improve sleep quality by reducing the inhibition of melatonin secretion, but the effect of full filters has been reported to be stronger in this regard. However, continuous use during the day may cause drowsiness or reduced concentration, so it makes more sense to use a full filter at night and a partial filter during the day [29,78].

Studies have shown that blue light can increase sympathetic nervous system activity and increase alertness and irritability, a mechanism that is directly linked to increased feelings of anxiety [9]. Exposure to blue light at night, especially before bed, can stimulate the brain and increase cortisol levels, a hormone that plays an important role in stress and anxiety responses. In this context, the use of blue light blocking filters, whether full or partial, has been shown to reduce these stimulating effects and increase levels of relaxation [60].

Various studies, including those conducted between 2017 and 2021, have reported that people who used blue light filters, especially at night, experienced a significant reduction in the intensity of daytime and nighttime anxiety. Full filters, which block wavelengths between 400 and 505 nm, have the greatest effect in reducing brain arousal and relieving anxiety levels, while partial filters, which target the range of 420 to 480 nm, have a more modest effect, but still significantly reduce nervous arousal and improve feelings of calm.

From a neuro-ophthalmological perspective, ipRGCs play a pivotal role in transmitting light signals to the suprachiasmatic nucleus (SCN) of the hypothalamus, which is responsible for regulating circadian rhythms and melatonin secretion [82]. Excessive stimulation of this pathway by blue light in the evening or night hours can disrupt the physiological balance of sleep and wakefulness and, through increased cortical arousal, can lead to the onset or exacerbation of disorders such as anxiety, migraine, and mania. In patients with migraine, increased sensitivity to light (photophobia) is a hallmark symptom. Findings from a study using "Blue Cut for Night" (BCN) glasses showed that reducing ipRGC stimulation at night significantly reduced the number of headache days and the severity of symptoms. These results support the idea that reducing blue light input may help control migraine attacks, possibly by reducing stimulation of the retina-thalamus-visual cortex pathway and modulating neuronal activity in pain-sensitive areas [61].

In the context of mania, several studies, including the randomized controlled trial by Henriksen et al., have shown that wearing blue-blocking glasses in the evening can significantly reduce the severity of manic symptoms. The mechanism of this effect is likely related to reducing ipRGC stimulation, increasing melatonin secretion, and improving sleep quality. In a study in which manic patients wore these glasses from 6 p.m. to 8 a.m., sleep efficiency increased and the need for medication was reduced. Polysomnography results also showed that the use of blue blockers increased REM sleep time, reduced frequent awakenings, and improved overall sleep efficiency. These findings, along with the hypothesis of a connection between noradrenergic pathways in the brain and light stimulation, suggest that inhibiting blue light input can be effective in reducing central nervous system hyperarousal and stabilizing mood.

On the other hand, in patients with photophobia, exposure to blue light may play a direct role in triggering pain and visual discomfort. Given that ipRGCs are not only connected to the suprachiasmatic nucleus but also to limbic regions of the brain, including the amygdala and hippocampus, their overstimulation can exacerbate emotional and stress responses. Therefore, reducing this stimulation through blue-blocking filters or protective shades can lead to reduced sensitivity to light and modulation of neural responses related to pain. In general, blue-light blocking filters, whether in the form of spectacle lenses or screen protectors, are a novel approach to optimizing ambient light and protecting visual health. The choice of filter type and its absorption rate should be adjusted based on individual conditions, type of activity, duration of screen use, and individual sensitivity to light to maintain a balance between visual efficiency, retinal health, and circadian rhythm regulation.

In recent years, the increasing use of digital devices such as smartphones, tablets and computers has led to a significant increase in the prevalence of computer vision syndrome (CVS) and digital asthenopia (DA). These symptoms include eye fatigue, temporary blurred vision, burning, frontal pain and impaired accommodation, which are mainly caused by prolonged activity at close range and continuous exposure to blue light emitted by screens. Spectral studies have shown that digital screens have the highest intensity of blue radiation in the range of 445-455 nm. Although this energy level does not pose a direct phototoxic risk to the retina, chronic exposure to close range and poor lighting conditions can cause persistent stimulation of accommodative pathways and changes in eye motor responses.

In response to this challenge, the use of blue-violet light-filtering lenses and lenses with mild positive power (approximately +0.40 diopters) have been proposed as strategies to reduce accommodative load and visual symptoms [23]. Recent studies have shown that adding +0.40 diopters to near lenses has no negative effect on convergence or range of accommodation and can reduce eye fatigue to some extent by reducing accommodative effort during near activities. Interestingly, a comparison of +0.40 D lenses and standard monofocal (SV) lenses has shown that both types of lenses have a similar effect on reducing symptoms of digital asthenopia, which is likely due to improved ergonomics and reduced physiological eye fatigue. In addition to these findings, studies on blue-light blocking filters have also reported mixed results. Some studies have suggested that these filters do not alter accommodative response, pupil size, or baseline visual function, but they can improve reading speed and subjective visual comfort by reducing glare and improving contrast. However, in healthy individuals, the use of these filters alone does not appear to have a significant effect on reducing CVS symptoms. Current evidence suggests that managing symptoms of digital work requires a multifaceted approach. Attention to near vision ergonomics (including appropriate distance, ambient lighting, and regular breaks based on the 20-20-20 rule) combined with the targeted use of low-power lenses and blue-violet light-blocking filters may be an effective

combination to reduce accommodative load and improve visual comfort in digital users. However, further longitudinal, controlled clinical studies are needed to definitively confirm the effectiveness of these interventions. The results of this series of studies on the effects of blue light blocking filters and their use have multifaceted effects on visual and neurological functions. Blue light with a wavelength of 380 to 445 nm can cause photochemical damage to the retina and negatively affect contrast sensitivity, color vision, and motor function in low light conditions. In patients with multiple sclerosis, the reduction in contrast sensitivity of peripheral vision is also reduced and individuals cannot correctly detect obstacles, highlighting the importance of vision protection in this group [45].

Animal studies have shown that chronic exposure to blue light, in addition to visual effects, can cause structural and functional changes in the hippocampus and memory impairment. The use of blue light-filtering lenses was able to partially reduce these morphological and functional changes, indicating the protective potential of these lenses at the central nervous system level. These findings are consistent with previous observations that short-wavelength blue light can affect cognitive processes such as learning and memory [47].

From the perspective of color vision and contrast sensitivity, data suggest that blue light-filtering lenses or partial tinted lenses can affect the perception of blue colors and contrast sensitivity in low-light conditions, although their effects on overall color vision and long-term contrast sensitivity are usually not clinically significant [45]. This is of particular importance for professional users in color-sensitive occupations and activities that require color and contrast accuracy, and requires a careful assessment of the relationship between protective effects and visual function.

A study of motor performance showed that blue-light-filtering lenses can reduce the perception of motion and speed of moving stimuli. A reduction of six to twenty percent in perceived speed was observed, especially when the lenses blocked the most blue light [63]. These results indicate potential indirect behavioral effects due to reduced contrast and exposure, and suggest that even relative changes in the blue light spectrum can affect motor visual behaviors. Overall, the findings of these studies emphasize the importance of a balanced approach to the use of blue-light filters: on the one hand, blue-light-filtering lenses can protect against retinal damage and cognitive changes caused by blue light; on the other hand, these lenses can slightly affect contrast sensitivity, blue color recognition, and motion perception. Therefore, the selection of a lens that blocks blue light should be based on a comprehensive assessment of the wearer's protective needs and visual performance requirements, and future studies with larger samples and long-term follow-up are necessary to determine clinical effects and guide practical recommendations.

Animal studies have shown that prolonged exposure to blue light can cause structural damage to the retina, increase apoptosis of retinal ganglion cells, and reduce the complexity of dendrites of visual cortex neurons. The use of blue light blocking lenses was able to reduce these pathological changes to some extent, indicating a potential protective role of these lenses. However, the protection provided is incomplete and minor damage is still observed, indicating the need to limit or carefully manage exposure to blue light in high-intensity work environments. In the case of blue light-filtering intraocular lenses, preclinical evidence suggests that reducing the transmission of short wavelengths can protect the retina against phototoxicity and prevent the progression of agerelated macular degeneration [27]. However, current clinical evidence is limited and insufficient to prove the real benefits of these lenses. In addition, reducing blue light can lead to minor changes in visual quality, color recognition, and contrast sensitivity, so the use of these lenses is recommended. Even short-term exposure to intense blue light can cause eye discomfort, and long-term exposure increases the risk of structural damage to the retina and neuronal changes in the visual cortex. Blue-light-filtering lenses can reduce eye fatigue and have limited protective effects on retinal structure and neurons in animal models, but complete protection is not guaranteed. The limited clinical evidence for blue-light-filtering intraocular lenses and glasses is significant, and further research is needed in the future. Given the potential harmful effects of blue light, a combination of the use of filtering lenses, reducing the time of direct exposure to intense light sources, and adjusting ambient lighting can be recommended as a risk management approach in workplaces with intense light. Consequently, although there is preliminary evidence supporting the protective role of blue-light-filtering lenses, clinical decisions should be based on a careful assessment of the benefits, limitations of the evidence, and individual needs. Future studies should investigate the long-term dose-response effects of blue light exposure and neurovisual outcomes in realworld clinical settings.

#### **Conclusions:**

Based on the studies reviewed, blue light—blocking filters can play an effective role in reducing the harmful effects of short-wavelength, high-energy light on visual performance and overall health. Evidence shows that blue light, while essential for circadian rhythm regulation, can cause visual fatigue, sleep disturbances, neural overstimulation, and even retinal stress when exposure is prolonged or occurs at inappropriate times.

Full blue-blocking filters provide the greatest protection against retinal damage and can improve sleep quality; however, they may also reduce color accuracy and overall visual clarity. In contrast, partial filters such as BlueControl lenses allow the passage of beneficial wavelengths, maintaining a balance between ocular protection and color fidelity, which makes them more suitable for everyday use. Moreover, these filters may help reduce sympathetic activation and enhance melatonin regulation, thereby alleviating anxiety and improving sleep quality. Nevertheless, current clinical evidence remains limited and somewhat inconsistent, highlighting the need for further longitudinal and controlled studies to clarify their long-term effects. Overall, the intelligent use of blue light—blocking filters, combined with proper visual ergonomics and optimized lighting conditions, represents an effective strategy to preserve visual health and enhance individual performance in the digital era [54].

#### **Authors' contributions**

All authors equally contributed to preparing this article

#### Acknowledgements

I would like to thank all members of the Optometry Department of Shahid Beheshti University of Medical Sciences, and I would also like to thank the editor, referees, and staff of the journal of modern Rehabiliation.

#### **Conflict of interest:**

The authors declared no conflict of interest.

### **Funding:**

This research did not receive any grant from funding agencies in the public, commercial, or non-profit sectors.

#### **References:**

- 1. Mainster MA, Findl O, Dick HB, Desmettre T, Ledesma-Gil G, Curcio CA, et al. The blue light hazard versus blue light hype. *American journal of ophthalmology*. 2022;240:51-7.
- 2. Lattimore MR, editor Combatant eye protection: an introduction to the Blue Light Hazard. *Degraded Visual Environments*: Enhanced, Synthetic, and External Vision Solutions 2016; 2016: SPIE.
- 3. Wentzel M, van Rensburg JJ, Terblans JJ. Radiology blues: Comparing occupational blue-light exposure to recommended safety standards. *SA journal of radiology*. 2023;27(1).
- 4. Tosini G, Ferguson I, Tsubota K. Effects of blue light on the circadian system and eye physiology. *Molecular vision*. 2016;22:61-72.
- 5. Charoenpipatsin N, Yothachai P, Nuntawisuttiwong N, Wongpraparut O, Choosri P, Silpa-Archa N. Dosimetry Assessment of Potential Hazard from Visible Light, Especially Blue Light, Emitted by Screen of Devices in Daily Use. *Clinical, Cosmetic and Investigational Dermatology*. 2025:169-76.
- 6. Rosenfield M. Living with blue light exposure. Rev Optom. 2019;156:56-60.
- 7. Algvere PV, Marshall J, Seregard S. Age-related maculopathy and the impact of blue light hazard. *Acta Ophthalmologica Scandinavica*. 2006;84(1):4-15.
- 8. Marie M, Forster V, Fouquet S, Berto P, Barrau C, Ehrismann C, et al. Phototoxic damage to cone photoreceptors can be independent of the visual pigment: the porphyrin hypothesis. *Cell death & disease*. 2020;11(8):711.
- 9. Moghadasin M, Dibajnia P. Verbal and practical intelligence in general anxiety, obsessive compulsive and major depression disorders. *European Review of Applied Psychology*. 2021;71(1):100630.
- 10. Wentzel M, van Rensburg JJ, Terblans JJ. Radiology blues: Comparing occupational blue-light exposure to recommended safety standards. *SA journal of radiology*. 2023;27(1).

- 11. Alobaid M, Boon M-Y, Dain SJ. How practitioners say they answer the questions of patients about ultraviolet protection. *Clinical and Experimental Optometry*. 2022;105(6):642-8.
- 12. Chorley AC, Evans BJ, Benwell MJ. Solar eye protection practices of civilian aircrew. *Aerospace Medicine and Human Performance*. 2015;86(11):953-61.
- 13. Ostovari M, Haghani M, Mortazavi SA, Mortazavi SMJ. Are Blue-Cut Lenses Safe for Children? Potential Effects on Eye Length and Refractive Disorders. *Journal of Biomedical Physics & Engineering*. 2025;15(2):199.
- 14. Griepentrog JE, Zhang X, Marroquin OC, Garver MB, Rosengart AL, Chang JC-C, et al. Association between conventional or blue-light-filtering intraocular lenses and survival in bilateral cataract surgery patients. *Iscience*. 2021;24(1).
- 15. Więsyk PJ, Urbańska K, Wójcik P, Jasiński K, Wojdat A. Blue Light and Visual Health: Mechanisms, Risks, and Protective Strategies. *Quality in Sport*. 2024;30:55218-.
- 16. Yeretsian T, Sanatani G, Nguyen B-N. Blue light blocking glasses: should we all be wearing them? 2023.
- 17. Cougnard-Gregoire A, Merle BM, Aslam T, Seddon JM, Aknin I, Klaver CC, et al. Blue light exposure: ocular hazards and prevention—a narrative review. *Ophthalmology and therapy*. 2023;12(2):755-88.
- 18. Pateras E. Blue light blocking ophthalmic lenses and their benefits—a review. *Journal of Materials Science Research and Reviews*. 2020;5(3):13-20.
- 19. Sliney DH. Intraocular and crystalline lens protection from ultraviolet damage. *Eye & contact lens*. 2011;37(4):250-8.
- 20. Walker DP, Vollmer-Snarr HR, Eberting CLD. Ocular hazards of blue-light therapy in dermatology. *Journal of the American Academy of Dermatology*. 2012;66(1):130-5.
- 21. Cougnard-Gregoire A, Merle BM, Aslam T, Seddon JM, Aknin I, Klaver CC, et al. Blue light exposure: ocular hazards and prevention—a narrative review. *Ophthalmology and therapy*. 2023;12(2):755-88.
- 22. Redondo B, Vera J, Ortega-Sánchez A, Molina R, Jiménez R. Effects of a blue-blocking screen filter on accommodative accuracy and visual discomfort. *Ophthalmic and Physiological Optics*. 2020;40(6):790-800.
- 23. Alionis ACFL, Netto AL, Lui TAF, Alves MR. Digital asthenopia: blue-blocking lenses and+ 0, 40D additional power in the near zone, for eye strain, accommodation and convergence functions. *Revista Brasileira de Oftalmologia*. 2022;81:e0054.
- 24. Hester L, Dang D, Barker CJ, Heath M, Mesiya S, Tienabeso T, et al. Evening wear of blue-blocking glasses for sleep and mood disorders: a systematic review. *Chronobiology International*. 2021;38(10):1375-83.
- 25. Mylona I, Floros GD. Blue light blocking treatment for the treatment of bipolar disorder: Directions for research and practice. *Journal of Clinical Medicine*. 2022;11(5):1380.
- 26. Glazer-Hockstein C, Dunaief JL. Could Blue Light–Blocking Lenses Decrease the Risk of Age-Related Macular Degeneration?: *LWW*; 2006. p. 1-4.
- 27. Lai E, Levine B, Ciralsky J. Ultraviolet-blocking intraocular lenses: fact or fiction. *Current opinion in ophthalmology*. 2014;25(1):35-9.
- 28. Edwards KH, Gibson GA. Intraocular lens short wavelength light filtering. *Clinical and Experimental Optometry*. 2010;93(6):390-9.
- 29. Margrain TH, Boulton M, Marshall J, Sliney DH. Do blue light filters confer protection against age-related macular degeneration? *Progress in retinal and eye research*. 2004;23(5):523-31.
- 30. Gopinath M, Balaji JJ, Kumar RK. Blue blocking lenses: *Evidences and Clinical Recommendations*. Authorea Preprints. 2022.
- 31. Aleksandravičiūtė E. THE EFFECT OF BLUE LIGHT BLOCKING SPECTACLE LENSES FOR DIGITAL ASTHENOPIA: A SYSTEMATIC REVIEW.
- 32. Liset R, Grønli J, Henriksen RE, Henriksen TE, Nilsen RM, Pallesen S. A randomized controlled trial on the effects of blue-blocking glasses compared to partial blue-blockers on sleep outcomes in the third trimester of pregnancy. *Plos one*. 2022;17(1):e0262799.
- 33. Coles-Brennan C, Sulley A, Young G. Management of digital eye strain. *Clinical and experimental Optometry*. 2019;102(1):18-29.

- 34. Alionis ACFL, Netto AL, Netto TAFL, Alves MR. Effects of blue-light blocking spectacle lens on computer-induced asthenopia. *eOftalmo*. 2020;6(3):51-5.
- 35. Singh S, Downie LE, Anderson AJ. Do blue-blocking lenses reduce eye strain from extended screen time? A double-masked randomized controlled trial. *American Journal of Ophthalmology*. 2021;226:243-51.
- 36. Moore PA, Wolffsohn JS, Sheppard AL. Attitudes of optometrists in the UK and Ireland to Digital Eye Strain and approaches to assessment and management. *Ophthalmic and Physiological Optics*. 2021;41(6):1165-75.
- 37. Ekemiri K, Ezinne N, McKinght D, Ekemiri C, Robin D, Victor V, et al. Eye Strain and Coated Glasses Preference: A Self-Reported Cross-Sectional Study of Urban and Rural Bankers in a Digitally Driven Modern Banking Landscape in Trinidad and Tobago.
- 38. Vera J, Redondo B, Ortega-Sanchez A, Molina-Molina A, Molina R, Rosenfield M, et al. Blue-blocking filters do not alleviate signs and symptoms of digital eye strain. *Clinical and Experimental Optometry*. 2023;106(1):85-90.
- 39. Yu H, Guo X, Wu J, Wu H, Zhao H. Analyzing the effect of blue-blocking lenses on color vision tests using the chromaticity coordinate method. *Heliyon*. 2024;10(12).
- 40. Alzahran HS, Roy M, Honson V, Khuu SK. Effect of blue-blocking lenses on colour contrast sensitivity. *Clinical and Experimental Optometry*. 2021;104(2):207-14.
- 41. Baldasso M, Roy M, Boon My, Dain SJ. Effect of blue–blocking lenses on colour discrimination. *Clinical and Experimental Optometry*. 2021;104(1):56-61.
- 42. Rehman MU, Ullah A, Shehzad S, Shah A. Effect of blue cut glasses on color discrimination and contrast sensitivity in young emmetropes. Khyber Medical University Journal. 2024;16(4):322-7.
- 43. Augustin AJ. The physiology of scotopic vision, contrast vision, color vision, and circadian rhythmicity: can these parameters be influenced by blue-light-filter lenses? *Retina*. 2008;28(9):1179-87.
- 44. Santandreu M, Valero EM, Gómez-Robledo L, Huertas R, Martínez-Domingo M-Á, Hernández-Andrés J. Long-term effects of blue-blocking spectacle lenses on color perception. Optics Express. 2022;30(11):19757-70.
- 45. Tripoli R, Kelly Schwirian M, Walley BG, Bland H, LaPointe L, Maitland G, editors. DEFICIENT CONTRAST VISUAL ACUITY IN PATIENTS WITH MULTIPLE SCLEROSIS DEGRADES GAIT PERFORMANCE UNDER CONDITIONS OF LOW ILLUMINATION. *MULTIPLE SCLEROSIS JOURNAL*; 2012: SAGE PUBLICATIONS LTD 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND.
- 46. Alzahrani HS, Khuu SK, Roy M. Modelling the effect of commercially available blue-blocking lenses on visual and non-visual functions. *Clinical and Experimental Optometry*. 2020;103(3):339-46.
- 47. Akansha EO, Bui BV, Ganeshrao SB, Bakthavatchalam P, Gopalakrishnan S, Mattam S, et al. Blue-light-blocking lenses ameliorate structural alterations in the rodent hippocampus. *International journal of environmental research and public health*. 2022;19(19):12922.
- 48. Monterio D, Kumar EOAM, Ghosh M, Poojary R, Jose J, Jathanna JS, et al. Impact of LED exposure on contrast sensitivity and protective efficacy of blue-blocking lenses. *International Journal of Ophthalmology*. 2025;18(10):1944.
- 49. Wolffsohn J, Dinardo C, Vingrys A. Benefit of coloured lenses for age-related macular degeneration. *Ophthalmic and Physiological Optics*. 2002;22(4):300-11.
- 50. Suzuki M, Kumagai N, Inui K, Kakigi R. Effects of color lenses on visual evoked magnetic fields following bright light. *Plos one*. 2018;13(8):e0201804.
- 51. SALEEM S, AMBREEN F, SHAFIQUE U, AHMED M, MUHAMMAD SB, ARIF K, et al. THE EFFECTS OF BLUE LIGHT-BLOCKING GLASSES VERSUS STANDARD LENSES ON CONTRAST SENSITIVITY AND VISUAL FATIGUE IN MYOPIC AND NON-MYOPIC ADULTS. INSIGHTS-JOURNAL OF HEALTH AND REHABILITATION Учредители: Health and Research Insights. 2025;3(1):445-54.
- 52. Lian Y, Lu W, Huang H, Wu G, Xu A, Jin W. The long-term effect of blue-light blocking spectacle lenses on adults' contrast perception. *Frontiers in Neuroscience*. 2022;16:898489.

- 53. Faruqui S, Agarwal R, Kumar R. A study of the correlation between smartphone usage and dry eye in medical students at a tertiary care center. *Trop J Ophthalmol Otolaryngol*. 2020;5(7):174-82.
- 54. Hipólito V, Coelho JM, editors. Blue Light of the Digital Era: A Comparative Study of Devices. *Photonics*; 2024: MDPI.
- 55. Redondo B, Vera J, Ortega-Sánchez A, Molina R, Jiménez R. Effects of a blue-blocking screen filter on accommodative accuracy and visual discomfort. *Ophthalmic and Physiological Optics*. 2020;40(6):790-800.
- 56. Ece BŞD, Altındaş İ. Impact of screen use on tear breakup time: associations with ophthalmological factors and break frequency in office workers. *Arquivos Brasileiros de Oftalmologia*. 2025;88(06):e2025-0083.
- 57. Zimmerman ME, Kim MB, Hale C, Westwood AJ, Brickman AM, Shechter A. Neuropsychological function response to nocturnal blue light blockage in individuals with symptoms of insomnia: a pilot randomized controlled study. Journal of the International Neuropsychological Society. 2019;25(7):668-77.
- 58. Wirz-Justice A, Terman M. Commentary on "Blue-blocking glasses as additive treatment for mania: a randomized placebo-controlled trial". *Bipolar Disord*. 2016;18(4):383-4.
- 59. Sarzetto A, Cavallini M, Fregna L, Attanasio F, Pacchioni F, Barbini B, et al. Blue blocking glasses for the treatment of mania in an elderly patient: A case report with polysomnographic findings. *Bipolar Disorders*. 2021.
- 60. Henriksen TE, Grønli J, Assmus J, Fasmer OB, Schoeyen H, Leskauskaite I, et al. Blue-blocking glasses as additive treatment for mania: effects on actigraphy-derived sleep parameters. *Journal of sleep research*. 2020;29(5):e12984.
- 61. Tatsumoto M, Suzuki E, Nagata M, Suzuki K, Hirata K. Prophylactic treatment for patients with migraine using blue cut for night glass. *Internal Medicine*. 2023;62(6):849-54.
- 62. Kanchwala AaMA. Comparison of Blue Block Lenses and Anti-Reflection Coated Lenses. *Acta Scientific Ophthalmology* (ISSN: 2582-3191). 2021;4(5).
- 63. Ali A, Roy M, Alzahrani HS, Khuu SK. The effect of blue light filtering lenses on speed perception. *Scientific Reports*. 2021;11(1):17583.
- 64. Niwano Y, Iwasawa A, Tsubota K, Ayaki M, Negishi K. Protective effects of blue light-blocking shades on phototoxicity in human ocular surface cells. *BMJ Open Ophthalmol*. 2019; 4 (1): e000217.
- 65. Mitate E, Moriwaki S, Masui I. Blue-Violet Light-Blocking Eye Protectors in Dental Practice: A Preliminary Study.
- 66. Theruveethi N, Bui BV, Joshi MB, Valiathan M, Ganeshrao SB, Gopalakrishnan S, et al. Blue light-induced retinal neuronal injury and amelioration by commercially available blue light-blocking lenses. *Life*. 2022;12(2):243.
- 67. Downie LE, Busija L, Keller PR. Blue-light filtering intraocular lenses (IOLs) for protecting macular health. Cochrane Database of Systematic Reviews. 2018(5).
- 68. Downie LE, Wormald R, Evans J, Virgili G, Keller PR, Lawrenson JG, et al. Analysis of a systematic review about blue light–filtering intraocular lenses for retinal protection: Understanding the limitations of the evidence. *JAMA ophthalmology*. 2019;137(6):694-7.
- 69. Hood S, Amir S. The aging clock: circadian rhythms and later life. *The Journal of clinical investigation*. 2017;127(2):437-46.
- 70. Esaki Y, Kitajima T, Ito Y, Koike S, Nakao Y, Tsuchiya A, et al. Wearing blue light-blocking glasses in the evening advances circadian rhythms in the patients with delayed sleep phase disorder: An open-label trial. *Chronobiology international*. 2016;33(8):1037-44.
- 71. Abdellah OB, Canale L, Dupuis P, Samoudi B, Asselman A, Zissis G, editors. Evaluation of Blue-Blocking Lenses Effects on the Melatonin Production level. 2021 IEEE International Conference on Environment and Electrical Engineering and 2021 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe); 2021: IEEE.
- 72. Giménez M, Beersma D, Daan S, van der Pol B, Kanis M, Van Norren D, et al. Melatonin and sleep-wake rhythms before and after ocular lens replacement in elderly humans. *Biology*. 2016;5(1):12.

- 73. Schmoll C, Khan A, Aspinall P, Goudie C, Koay P, Tendo C, et al. New light for old eyes: comparing melanopsin-mediated non-visual benefits of blue-light and UV-blocking intraocular lenses. *British Journal of Ophthalmology*. 2014;98(1):124-8.
- 74. Haghani M, Abbasi S, Abdoli L, Shams SF, Zarandi BFBaB, Shokrpour N, et al. Blue light and digital screens revisited: a new look at blue light from the vision quality, circadian rhythm and cognitive functions perspective. *Journal of Biomedical Physics & Engineering*. 2024;14(3):213.
- 75. Sliney DH. Eye protective techniques for bright light. *Ophthalmology*. 1983;90(8):937-44.
- 76. Ostrin LA. Ocular and systemic melatonin and the influence of light exposure. *Clinical and experimental optometry*. 2019;102(2):99-108.
- 77. Nishi T, Saeki K, Obayashi K, Miyata K, Tone N, Tsujinaka H, et al. The effect of blue-blocking intraocular lenses on circadian biological rhythm: protocol for a randomised controlled trial (CLOCK-IOL colour study). *BMJ open*. 2015;5(5):e007930.
- 78. Comparetto R, Farini A. Mitigating retinal damage and circadian rhythm modification by blue-blocking spectacles lenses: evaluation parameters. *The European Physical Journal Plus*. 2019;134(10):494.
- 79. Daneault V, Dumont M, Massé É, Forcier P, Boré A, Lina J-M, et al. Plasticity in the sensitivity to light in aging: Decreased non-visual impact of light on cognitive brain activity in older individuals but no impact of lens replacement. *Frontiers in physiology*. 2018;9:1557.
- 80. Landers JA, Tamblyn D, Perriam D. Effect of a blue-light-blocking intraocular lens on the quality of sleep. *Journal Of Cataract & Refractive Surgery*. 2009;35(1):83-8.
- 81. Wei X, She C, Chen D, Yan F, Zeng J, Zeng L, et al. Blue-light-blocking intraocular lens implantation improves the sleep quality of cataract patients. *Journal of Clinical Sleep Medicine*. 2013;9(8):741-5.
- 82. Ostrin LA, Abbott KS, Queener HM. Attenuation of short wavelengths alters sleep and the IP RGC pupil response. *Ophthalmic and Physiological Optics*. 2017;37(4):440-50.
- 83. Glickman GL, Harrison EM, Herf M, Herf L, Brown TM. Optimizing the Potential Utility of Blue-Blocking Glasses for Sleep and Circadian Health. *Translational Vision Science & Technology*. 2025;14(7):25-.
- 84. Alzahrani H. The Effect of Blue-Blocking Lenses on Visual Perception and Neural Processes Underlying Circadian Rhythm Regulation: *UNSW Sydney*; 2021.
- 85. Sano I, Tanito M, Okuno T, Ishiba Y, Ohira A. Estimation of the melatonin suppression index through clear and yellow-tinted intraocular lenses. *Japanese journal of ophthalmology*. 2014;58(4):320-6.
- 86. Shechter A, Quispe KA, Mizhquiri Barbecho JS, Slater C, Falzon L. Interventions to reduce short-wavelength ("blue") light exposure at night and their effects on sleep: A systematic review and meta-analysis. *Sleep Advances*. 2020;1(1):zpaa002.
- 87.Lin JB, Gerratt BW, Bassi CJ, Apte RS. Short-wavelength light-blocking eyeglasses attenuate symptoms of eye fatigue. *Investigative ophthalmology & visual science*. 2017;58(1):442-7.
- 88. Palavets T, Rosenfield M. Blue-blocking filters and digital eyestrain. *Optometry and Vision Science*. 2019;96(1):48-54.
- 89. Trang N, Lalonde G, Dubé Y, Bourgault S, Rochette PJ. Short wavelengths filtering properties of sunglasses on the Canadian market: are we protected? *Canadian Journal of Ophthalmology*. 2018;53(2):104-9.
- 90. Turner PL, Mainster MA. Circadian photoreception: ageing and the eye's important role in systemic health. *British Journal of Ophthalmology*. 2008;92(11):1439-44.
- 91. Mainster MA, Turner PL. Blue-blocking IOLs vs. short-wavelength visible light: hypothesis-based vs. evidence-based medical practice. *Ophthalmology*. 2011;118(1):1-2.
- 92. Rosenfield M, Li RT, Kirsch NT. A double-blind test of blue-blocking filters on symptoms of digital eye strain. *Work*. 2020;65(2):343-8.
- 93. Wada K, Nagata C, Nakamura K, Iwasa S, Shiraki M, Shimizu H. Light exposure at night, sleep duration and sex hormone levels in pregnant Japanese women. *Endocrine journal*. 2012;59(5):393-8.
- 94. Blume C, Garbazza C, Spitschan M. Effects of light on human circadian rhythms, sleep and mood. *Somnologie*. 2019;23(3):147-56.
- 95. Lian Y, Lu W, Huang H, Wu G, Xu A, Jin W. The long-term effect of blue-light blocking spectacle lenses on adults' contrast perception. *Frontiers in Neuroscience*. 2022;16:898489.

- 96. Santandreu M, Valero EM, Gómez-Robledo L, Huertas R, Martínez-Domingo M-Á, Hernández-Andrés J. Long-term effects of blue-blocking spectacle lenses on color perception. *Optics Express*. 2022;30(11):19757-70.
- 97. Deprato A, Haldar P, Navarro JF, Harding BN, Lacy P, Maidstone R, et al. Associations between light at night and mental health: A systematic review and meta-analysis. *Science of The Total Environment*. 2025;974:179188.
- 98. Touitou Y, Touitou D, Reinberg A. Disruption of adolescents' circadian clock: The vicious circle of media use, exposure to light at night, sleep loss and risk behaviors. *Journal of Physiology-Paris*. 2016;110(4):467-79.
- 99. Cao M, Xu T, Yin D. Understanding light pollution: Recent advances on its health threats and regulations. *Journal of Environmental Sciences*. 2023;127:589-602.
- 100. Xu Y-x, Huang Y, Ding W-q, Zhou Y, Shen Y-t, Wan Y-h, et al. Exposure to real-ambient bedroom light at night delayed circadian rhythm in healthy Chinese young adults: A cross-sectional study. *Environmental Research*. 2024;251:118657.
- 101. Fuller G, Raghanti MA, Dennis PM, Kuhar CW, Willis MA, Schook MW, et al. A comparison of nocturnal primate behavior in exhibits illuminated with red and blue light. *Applied Animal Behaviour Science*. 2016;184:126-34.
- 102. Zhu B, Hanlon EC, Knutson KL, Reutrakul S. Cardiometabolic consequences of circadian disruption. Encyclopedia of Sleep and Circadian Rhythms: Volume 1-6, Second Edition: *Elsevier*; 2023. p. 644-56.
- 103. Lunn RM, Blask DE, Coogan AN, Figueiro MG, Gorman MR, Hall JE, et al. Health consequences of electric lighting practices in the modern world: a report on the National Toxicology Program's workshop on shift work at night, artificial light at night, and circadian disruption. *Science of the Total Environment*. 2017;607:1073-84.
- 104. Figueiro MG, Pedler D. Red light: A novel, non-pharmacological intervention to promote alertness in shift workers. *Journal of safety research*. 2020;74:169-77.
- 105. Achiron A, Elbaz U, Hecht I, Spierer O, Einan-Lifshitz A, Karesvuo P, et al. The effect of blue-light filtering intraocular lenses on the development and progression of neovascular age-related macular degeneration. *Ophthalmology*. 2021;128(3):410-6.
- 106. Wirtitsch MG, Schmidinger G, Prskavec M, Rubey M, Skorpik F, Heinze G, et al. Influence of blue-light-filtering intraocular lenses on color perception and contrast acuity. *Ophthalmology*. 2009;116(1):39-45.
- 107. CI F-R. Blue light filter intraocular lenses in vitrectomy combined with cataract surgery. *Am J Ophthalmol*. 2008;145:499-503.
- 108. Gray R, Hill W, Neuman B, Houtman D, Potvin R. Effects of a blue light–filtering intraocular lens on driving safety in glare conditions. *Journal of Cataract & Refractive Surgery*. 2012;38(5):816-22.
- 109. Singh S, Downie LE, Anderson AJ. Do blue-blocking lenses reduce eye strain from extended screen time? A double-masked randomized controlled trial. *American Journal of Ophthalmology*. 2021;226:243-51.