Research Article

Logistic Regression Analysis of Functional Constipation Factors in the Elderly

Zeinab Shiravi^{1*}, Zahra Abdollahzade², Saeed Talebian³, Fatemeh Alsadat Mirzadeh⁴

- 1- Department of Elderly health, T School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran.
- 2- Department of Physiotherapy, Faculty of Paramedical and Rehabilitation Sciences, Mashhad University of Medical Sciences, Mashhad, Iran.
- 3- Department of Physiotherapy, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran.
- 4- Department of Geriatric Medicine, Ziaeian Hospit, Tehran University of Medical Sciences, Tehran, Iran.

*Corresponding author: Zeinab Shiravi, Ph.D, Assistant Professor

Department of Elderly health, T School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran. Email: <u>zshiravi@sina.tums.ac.ir</u>

Tel: 09123710970

ORCID ID:

Zeinab Shiravi: 0000-0003-3996-861X Zahra Abdollahzade: 0000-0002-4526-1170 Saeed Talebian: 0000-0002-4945-8085 Fatemeh Alsadat Mirzadeh: 0000-002-4307-0282

Article info:

Received: 8 Mar 2025 Accepted: 3 Jun 2025

Citation: Shiravi Z, Abdollahzade Z, Talebian S, Alsadat Mirzadeh F. Designing Logistic Regression Supervised Machine Learning Software in the Evaluation of Physiological and Clinical Factors in Functional Constipation in the Elderly. Journal of Modern Rehabilitation. 2025;19(4):?-?

Running title: LR analysis of FC factors in the elderly

Abstract

Background: Machine learning software programs are of great interest in medical sciences for their diagnostic and therapeutic applications. Elderly people can benefit significantly from these technologies due to their physical limitations. The aim of this study is to develop and evaluate a supervised machine learning model for predicting functional constipation (FC) in the elderly.

Methods: The specific software was developed in Excel as a logistic regression supervised machine learning model (LR-SML 402). This software was developed based on a secondary analysis of existing data, including articles and doctoral dissertations on elderly individuals with FC who underwent colorectal evaluations using advanced laboratory equipment. The correlation

between labeled data and colorectal parameter outputs was measured using 480 datasets from published sources and research laboratories. Strong correlations were obtained between variables such as age, body mass index, and Wexner's questionnaire scores with FC parameters.

Results: To validate LR-SML 402 performance, the results were compared with a neural network model in SPSS software. The Excel-based model demonstrated strong performance in terms of sensitivity, specificity, and area under the curve.

Conclusion: The LR-SML 402 model shows that supervised machine learning using logistic regression may provide meaningful clinical predictions of FC indicators in the elderly. This approach can reduce diagnostic time and cost.

Keywords: Chronic constipation; Elderly; Supervised logistic machine learning

Introduction

Artificial intelligence (AI) is one of the most important consequences of the development of extensive software technology in applied engineering fields. Today, this technique is ready to help patients, students, professors, and improve the treatment and health of society (1). Recently, artificial intelligence methods have been used to predict diseases and aging problems and help clinical professionals make decisions based on medical records. The improvement of artificial intelligence, as one of the latest generations of modern technologies, has made rapid progress and plays an important role in predicting and classifying problems related to the elderly (2). Many scientists in clinical and therapeutic research widely use this method for diagnosis, treatment, prediction, as well as for improving the effectiveness of health care. Important and unprecedented development of machine learning, there are still limitations in the curricula of medical and rehabilitation schools worldwide, especially at the graduate level, so training and familiarization of academic staff, students and other teaching staff with these technologies is essential (3).

On the other hand, with the increase in the number of older adults in society, which is expected to increase by 56% in the next 15 years (individuals over 60 years old) and the number of "elderly" (over 80 years old) will triple by 2050, sphincter-related problems will be one of the most important health issues and limitations facing the elderly.

Logistic regression supervised machine learning (LR-SML) has good interpretability and low computational cost, and is considered to be a classification algorithm for high-dimensional data. It is a statistical method that predicts the probability of an outcome based on one or more predictor variables (4).

Various machine learning approaches have been used to identify the onset of dementia and cognitive problems. Some research has focused on the Activities of Daily Living (ADL) of the elderly to predict their cognitive level. Deep learning techniques can be useful for discovering anomalies in the normal behavior of people (5). Ju (2017) utilized deep learning with brain network data and clinically relevant information (including the subject's age, gender, and ApoE gene) to construct a targeted auto-encoder network. This network successfully distinguished normal aging from mild cognitive impairment and early-stage Alzheimer's disease. The model presented by Ju (2017) is more stable and reliable compared to traditional methods and can help predict and prevent Alzheimer's in its early stages (6).

According to the review of studies conducted in this field, no research has focused on predicting indicators of functional constipation in the elderly. The purpose of this research is to design a logistic regression supervised machine learning (LR-SML) program based on artificial intelligence

to predict the rate and extent of functional constipation in the elderly without performing timeconsuming, costly procedures.

Methods

1. Elderly Subjects

The prediction of functional constipation values was performed in 480 cases, equally divided between male (n=240) and female (n=240) groups. Primary data (input layer) were collected from previous population studies (retrospective data from theses and clinics in Tehran). Ethical approval was obtained from Tehran University of Medical Sciences (IR.TUMS.MEDICINE.REC.1402.682). A Consolidated Standards of Reporting Trials (CONSORT) flow diagram illustrates participant progression from enrollment to analysis (Figure 1).

Figure 1. Consolidated Standards of Reporting Trials (CONSORT) diagram comparing two machine learning software analyses.

2. Logistic regression supervised machine learning:

Logistic regression supervised machine learning (LR-SML) was implemented to predict seven key anorectal physiological parameters: resting anal pressure, rectal pressure during coughing, anal pressure during coughing, maximum pressure during squeezing, pressure during squeezing, threshold of anorectal inhibitory reflex, and defecation index. These output variables were analyzed in relation to five input variables: age, weight, height, body mass index, and Wexner questionnaire scores. The selection of these variables was based on established moderate to strong correlations documented in previous research (Tables 1, 2), which supported their predictive relationship with functional constipation indicators in elderly populations. The LR-SML approach was chosen for its demonstrated effectiveness in handling such clinical prediction tasks while maintaining interpretability of results.

Table 1. Correlation between input layer variables and primary output layer variables in female participants (n=240)

Primary output layer	Input layer								
	Age (year)	Height (m)	Weight (Kg)	BMI (Kg/m ²)	Wexner				
Rest anal pressure (mm Hg)	0.709	-0.222	0.691	0.631	0.916				
Rectal pressure during coughing (mm Hg)	-0.653	0.182	-0.651	-0.579	-0.956				
Anal pressure during coughing (mm Hg)	-0.664	0.192	-0.684	-0.607	-0.953				
Maximum pressure during squeezing (mm Hg)	-0.648	0.181	-0.648	-0.576	-0.959				
Pressure during squeezing (mm Hg)	-0.627	0.166	-0.610	-0.539	-0.945				
Threshold of anorectal inhibitory reflex (cm ³)	-0.629	0.140	-0.665	-0.560	-0.923				
Defecation Index (Ratio)	-0.573	0.170	-0.594	-0.531	-0.944				

Table 2. Correlations between input layer variables and output layer variables in male participants (n=240)

Primary output layer	Input layer							
	Age	Height	Weight (Kg)	$\frac{BMI}{(Ka/m^2)}$	Wexner			
Post anal prossure (mm Hg)	(year)	(m) 0.152	$(\mathbf{K}\mathbf{g})$	$\left(\mathbf{Kg}/\mathbf{H}\right)$	0.055			
Rectal pressure during coughing (mm Hg)	-0.602	0.132	-0.637	-0.567	-0.933			
Anal pressure during coughing (mm Hg)	-0.572	0.121	-0.597	-0.528	-0.858			
Maximum pressure during squeezing (mm Hg)	-0.572	0.119	-0.611	-0.545	-0.865			
Pressure during squeezing (mm Hg)	-0.553	0.137	-0.645	-0.582	-0.839			
Threshold of anorectal inhibitory reflex (cm ³)	-0.616	0.121	-0.792	-0.683	-0.893			
Defecation Index (Ratio)	-0.539	0.165	-0.771	-0.699	-0.878			

We used two independent software programs: 1) Logistic Regression Supervised Machine Learning in Excel, and 2) SPSS (Neural Network, Multilayer Perceptron). The sensitivity and specificity of the LR-SML software were evaluated and compared with the Neural Network

Multilayer Perceptron in SPSS. Dedicated Non-Negative Matrix Factorization (NMF) equations were written in Excel to calculate multiple regression between input variables and predictions in the input layer. Nonnegative matrix factorization (NMF) is a technique where a matrix V with nonnegative entries is factored into two matrices W and H (Figure 2).

Figure 2. Nonnegative matrix factorization (NMF) diagram. Matrix multiplication can be implemented by computing the column vectors of V as linear combinations of the column vectors in W, using coefficients supplied by columns of H. The relationship is expressed as: $V = W \cdot H$

The equations of NMF are:

a) MINVERSE(MMULT(TRANSPOSE(A2:F241), A2:F241)),

where A2:F241 is the input layer (intercept "A", age "B", weight "C", height "D", BMI "E", and Wexner "F") for 240 cases in the Excel sheet (Figure 3).

8	5 ∙ ∂~	C 🖻 🖬	ኤ 🖻 🕻	5 6 7 7	¶ A ₹		Software	e of LR-MI		5 •∂∘	C 🖻 🖬	ኤ 🖻 🕻		¶ A ₹		Software of L	R-ML
File	: Home	Insert Pa	ge Layout F	⁻ ormulas Da	ta Review	View H	lelp Po	'ower Pivo	^{it} File	e Home	Insert Pa	ge Layout 🛛 🕯	Formulas Da	ata Review	View H	elp Power	Pivot
M4		•	× ✓	<i>f</i> _x 21.4828	6369896							N 7	£ (
	А	В	С	D	E	F	G		P2		• : [×	Jx {=MINV	ERSE(MMULI(TRANSPOSE()	42:F241),A2:F	+241))}
1		Age	Height	Weight	BMI	Wexner		Re	e: 🖌	Р	Q	R	S	Т	U	۷	\ \
2	1	51	1.65	58.3	21.41	3.0			1								
3	1	53	1.67	57.3	20.55	3.0			2	135.20	0.00295	-78.6386	0.81692	-2.41329	0.00923		
4	1	55	1.63	69.7	26.23	6.0			3	0.00295	0.00011	-0.00382	1.7E-05	-0.00016	-4.1E-05		
5	1	57	1.66	73.0	26.49	8.0			1	-79 6296	-0.00282	45 0257	-0.49161	1 /1200	-0.00205		
6	1	59	1.68	64.4	22.82	9.0			4	-78.0580	-0.00562	43.9557	-0.46101	1.41200	-0.00505		
7	1	62	1.69	64.6	22.62	8.6			5	0.81692	1.7E-05	-0.48161	0.00533	-0.01524	-9.9E-06		
8	1	60	1.69	67.0	23.46	10.6			6	-2.41329	-0.00016	1.41288	-0.01524	0.04461	-0.00011		
9	1	61	1.67	64.2	23.02	10.0			7	0.00923	-4.1E-05	-0.00305	-9.9E-06	-0.00011	0.00012		
10	1	60	1 67	610	າວ ດາ	11 0			0								

Figure 3. Input layer variables (Age, Height, Weight, BMI, Wexner) and Non-Negative Matrix Factorization (NMF) equation (MINVERSE(MMULT(TRANSPOSE(A2:F241), A2:F241))) in Excel.

b) MMULT (P2:U7, MMULT (TRANSPOSE (A2:F241), H2:N241)),

where P2:U7 contains the MINVERSE(MMULT(TRANSPOSE(intercept...))) results and H2:N241 represents the primary output layer variables (resting anal pressure "H", rectal pressure during coughing "I", anal pressure during coughing "J", maximum pressure during squeezing "K", pressure during squeezing "L", threshold of anorectal inhibitory reflex "M", and defecation index "N") as implemented in the Excel spreadsheet (Figure 4).

B	🖬 🗲 🖆 🖆 🖾 🛱 🛱 🐺 🍸 🎗 🗧 Software of LR-ML case- 2024 .xlsx - Excel							
File	e Home Inser	rt Page Layout	Formulas Data	Review View	Help Power Pivot	Q Tell me what	you want to do	
W2		• : × ~	fx {=MMULT(P2	:U7,MMULT(TRANSF	OSE(A2:F241),H2:N2	241))}		
	W	Х	Y	Z	AA	AB	AC	
1	Rest anal press	Rectal Pressure	Anal Pressure o	Maximum Pres	Pressure during	Threshold of Ar	Defecation Index	
2	-31.4023269	78.44501263	121.1494878	175.6439099	75.4065239	-47.6575817	1.85270123	
3	0.620390085	-0.20905304	-0.43334496	-0.5676726	-0.4806919	-0.1187211	-0.00144803	
4	5.521273358	7.581671341	46.27901218	31.93962306	50.04805718	58.45449025	-0.10701798	
5	0.396261387	-0.31550765	-1.13719349	-1.00156421	-0.9630856	-0.92019077	-0.0031337	
6	0.187903863	0.454375667	1.826318442	1.639889998	2.273450118	2.170557149	0.001878837	
7	2.096845946	-1.45438943	-2.84183032	-4.30570681	-3.76122995	-0.89541793	-0.04891787	

Figure 4. Hidden layer calculation using matrix multiplication: MMULT(P2:U7, MMULT(TRANSPOSE(A2:F241), H2:N241))

c) MMULT (\$A\$2: \$F\$241, W2:W7 ...AC7),

where W2:W7 contains the multiple regression values (hidden layer) used to detect and predict the output layers corresponding to columns W, X, Y, Z, AA, AB, and AC. This equation predicts all output layer values in.

۵] ちゃ 🕐 🗋 📾 诺 🛱 🛃 🐺 🍸 🖓 후 🦷 Software of LR-ML 240 case- 2024 .xlsx - Excel						
File	Home Insert I	Page Layout Formulas	Data Review View	Help Power Pivot	Q Tell me what you want	t to do	
AE2	•	$\times \checkmark f_x = \{ = (N \land f_x \land f_x$	1MULT(\$A\$2:\$F\$241,W2:W	/7))}			
	AE	AF	AG	AH	AI	AJ	AK
1	Rest anal pressure	Pressure during cou	Pressure during cou	m Pressure during s	ssure during squeez	l of Anorectal inhibit	Defecation Index
2	42.764	67.266	139.694	163.202	114.723	32.885	1.313
3	43.556	66.920	139.305	162.282	113.751	32.852	1.310
4	56.849	60.508	124.348	143.860	100.493	28.525	1.136
5	63.805	56.484	115.904	132.190	90.919	25.774	1.022
6	63.155	55.808	116.191	129.976	87.127	25.749	0.988
7	64.274	55.684	115.899	129.787	87.044	25.719	1.001
8	68.336	52.818	109.888	121.286	80.082	23.781	0.901
9	66.396	54.014	112.617	124.748	82.557	24.655	0.939
10	69.113	52.351	109.342	119.874	78.315	23.641	0.888

Figure 5. Output layer calculation using matrix multiplication: MMULT(\$A\$2:\$F\$241, W2:W7) for columns AE to AK

Then, an optimization algorithm was applied to the controlled matrix to determine the best estimate between inputs and outputs.

Input Layer				Н	idden Layei			Output Layer	Result		
Age	80	-31.402327	78.445013	121.14949	175.64391	75.406524	-47.65758	1.8527012	Rest anal pressure	109.149	Abnorm
Height	1.75	0.62039009	-0.209053	-0.433345	-0.567673	-0.480692	-0.118721	-0.001448	Rectal Pressure during coughing	30.729	Normal
Weight	78.3	5.52127336	7.5816713	46.279012	31.939623	50.048057	58.45449	-0.107018	Anal Pressure during coughing	67.954	Normal
BMI	25.57	0.39626139	-0.315508	-1.137193	-1.001564	-0.963086	-0.920191	-0.003134	Maximum Pressure during squeezing	59.870	Weaknes
Wexner	21.0	0.18790386	0.4543757	1.8263184	1.63989	2.2734501	2.1705571	0.0018788	Pressure during squeezing	31.438	Weakne
Gender	2.0	2.09684595	-1.454389	-2.84183	-4.305707	-3.76123	-0.895418	-0.048918	Threshold of Anorectal inhibitory reflex	9.869	Weakne
76		225.10792	-101.9312	-436.3014	-489.8226	-364.5806	-123.215	0.7044106	Defecation Index	0.350	Normal
Logistic R	legression	0.24290179	-0.017075	-0.127536	-0.050362	0.1765633	0.0297533	0.0087955			
Supervise	ed	-112.41786	108.57262		426.67882	332.69412	105.44261	0.8365823			
Machine	Learning	1.30604004	-1.431428	-4.485082	-5.500616	-4.711565	-1.578928	-0.0275			
Version 40)2	-4.1869278	4.0207169	12.958157	15.242002	11.097289	3.4996244	0.0217728			
		3.14886818	-2.223545	-4.980803	-7.23647	-5.482552	-0.936512	-0.044065			

Figure 6. Logistic Regression Supervised Machine Learning (LR-SML) software architecture.

2 - Software under SPSS environment in the Neural Networks section

In SPSS software (all versions), the Neural Networks module estimates output layers by evaluating input layers and initial outputs. Using the Multilayer Perceptron option with a 70% training and 30% testing partition, we predicted output layers for functional constipation. This allowed comparison with the LR-SML Excel implementation. The software generated: visualizations of hidden layers, calculation matrices with multiple regression, and predicted values stored in new columns (Figures 7 and 8).

Eile Edit	⊻iew <u>D</u> ata	Iransform	Analyze Graphs Litilities	Add	-ons Wind	low <u>H</u> elp	0				
۵ 🗏 🗠	🐨 🗄 🗖) 🚠 🖬 🛛	Reports	•	8 0 9	the start of the s					
1 : Groups		1.0	Descriptive Statistics	•			_				
	Groups	RestAr	Tables	•	ahina A	AnalPressureCoughing	2	MaxPressureSqueezing	PressureSqueezing	ThereshAnorecInhibitoryReflex	DefecationIndex
1		1	RFM Analysįs	•	.0000	219.000	00	300.0000	221.0000	50.0000	1.90680
2		1	Compare Means	•	1.0000	216.000	00	247.0000	214.0000	50.0000	1.54980
3		1	General Linear Model	•	2.0000	179.000	00	236.0000	205.0000	24.6600	1.29030
4	1	1	Generalized Linear Models	•	.0000	163.000	00	219.0000	186.0000	20.0000	0.97200
5	ī	1	Mixed Models	•	5.0000	152.000	00	174.0000	100.0000	20.0000	0.91900
6		1	<u>C</u> orrelate	•	9.0000	150.000	00	169.0000	99.0000	20.0000	0.86870
7		1	Regression	•	3.0000	145.000	00	166.0000	99.0000	20.0000	0.71590
8		1	Loglinear	•	10000	141.000	00	166.0000	98.0000	20.0000	0.69120
9		1	Neural Net <u>w</u> orks	•	Multilay	er Perceptron	00	149.0000	85.0000	20.0000	0.65690
0 10		1	Classi <u>f</u> y	•	R Radial E	Basis Function	00	144.0000	83.0000	19.3300	0.53130
11	1	1	Dimension Reduction	•	5.0000	126.000	00	134.0000	72.0000	18.0000	0.42130
12		1	Scale	•	2.0000	124.000	00	127.0000	68.0000	15.3300	0.38730
13		1	Nonparametric Tests	•	.0000	104.000	00	100.0000	35.0000	10.0000	0.26730
14	1	1	Forecasting	•	3.0000	90.000	00	90.0000	35.0000	10.0000	0.26710
15	1	1	<u>S</u> urvival	•	1.0000	88.000	00	72.0000	31.0000	8.0000	0.23520
16		1	Multiple Response	•	2.0000	84.000	00	63.0000	20.0000	9.0000	0.17800
17	1	1	Missing Value Analysis		0.0000	80.000	00	62.0000	21.0000	7.0000	0.13460
18	1	1	Multiple Imputation	•	1.0000	63.000	00	58.0000	20.0000	11.0000	0.10360
19	1	1	Complex Samples	•	0.0000	52.000	00	50.0000	18.0000	6.0000	0.06220
20		1	Quality Control	•	8.0000	32.000	00	49.0000	19.0000	5.0000	0.05940
21		1	ROC Curve		2.0000	220.000	00	289.0000	241.0000	47.0700	1.59180
22		1	41.0000	9	0.0000	213.000	00	279.0000	229.0000	44.5120	1.59040

Acces	sibility: Inve	tigate			E E0	
1 : Age	5	Multilayer Perceptron	×			
1	Age	Variables Partitions Architecture Training Output Save Export Options		sureCoughing	MaxPressureSqueezing	PressureSqueezing
		Variables: Dependent Variables:	_			
1	51.0	Predicted Value for RestAnaPressure (MLP_Predicte Predicted Value for RestAnaPressure RestalPressure RestAnaPressure RestalPressure RestalPressure		147 0000	183 0000	126.0000
2	53.0	Predicted Value for AnalPressureCoughing (MLP_Pre AnalPressureCoughing		145 0000	151 0000	122.0000
3	54.0	Predicted Value for MaxPressureSqueezing (MLP_Pr		120.0000	145.0000	117.0000
4	57.0	Predicted Value for PressureSqueezing (MLP_Predict PressureSqueezing		109.0000	134.0000	106.0000
5	59.0	Predicted Value for InereshAnorecimptoryRenex [Eactors. Predicted Value for DefecationIndex IMLP Predicted		102.0000	106.0000	57.0000
6	60.0	RestAnalPressurePython		101.0000	104.0000	56.0000
7	60.0	RectalPressureCoughingPython		97.0000	102.0000	56.0000
8	61.0	MaxPressureCoughingPython		95.0000	101.0000	56.0000
9	62.0	PressureSqueezingPython		88.0000	91.0000	49.0000
10	64.0	ThereshAnorecInhibitoryReflexPython		87.0000	88.0000	47.0000
11	65.0	DefecationIndexPython Covariates: Age		84.0000	82.0000	41.0000
12	66.0	A Height		83.0000	78.0000	39.0000
13	67.0	Weight		70.0000	61.0000	20.0000
14	67.0	🔶 🖉 ВМ		60.0000	55.0000	20.0000
15	68.0	Ø Wexner	-	59.0000	44.0000	18.0000
16	74.0			56.0000	39.0000	11.0000
17	75.0	To change the measurement level of a variable, right-click Rescaling of Covariates:		54.0000	38.0000	12.0000
18	76.0	the variable in the Variables list. Standardized	-	42.0000	35.0000	11.0000
19	77.0			35.0000	31.0000	10.0000

Figure 7. SPSS Neural Networks module: Configuration for output layer prediction from input and initial output layers.

Figure 8. SPSS neural network output showing: (1) hidden layer neurons, (2) input layer interactions (excitatory/inhibitory), and (3) their combined effects on output layer predictions.

Results

As mentioned earlier, there were moderate to good correlations between the initial inputs and outputs, and then the appropriate algorithm was written using supervised machine learning methods in the Excel environment. Various criteria were used and discussed to verify and validate this algorithm. A comparative analysis between the radial basis function network machine learning algorithm and multiple logistic regression in SPSS, using labeled data for training and testing, was performed (Figure 9).

The mean and standard deviations of the two groups (female and male) were measured (Tables 3 and 4).

Tabl	le 3. Mean (SD, max, min) of 240 cas	es (female)		
	Parameter	Minimum	Maximum	SD
	Age (years)	49.00	79.00	8.2
	Height (m)	1.51	1.82	0.06
	Weight (kg)	56 50	85 10	7.66

Age (years)	49.00	/9.00	8.21	05.15
Height (m)	1.51	1.82	0.06	1.72
Weight (kg)	56.50	85.10	7.66	71.98
BMI (kg/m ²)	17.95	36.18	3.61	24.38
Wexner questionnaire scale	2.00	30.00	7.79	17.24
Resting anal pressure (mm Hg)	43.00	176.00	23.36	87.82
Rectal pressure during coughing (mm Hg)	14.00	70.00	13.53	41.18
Anal pressure during coughing (mm Hg)	21.00	147.00	27.61	86.30
Maximum pressure during squeezing (mm	12.00	183.00	39.53	87.36
Hg)				
Pressure during squeezing (mm Hg)	1.00	137.00	33.96	51.55
Threshold of anorectal inhibitory reflex (cm ³)	0.00	44.00	8.85	16.60
Defecation Index (ratio)	0.00	1.70	0.42	0.55

Mean

65 10

0.01

Table 4. Mean (SD, max, min) of 240 cases (male)

Parameter	Minimum	Maximum	SD	Mean
Age (years)	49.00	79.00	8.20	65.13
Height (m)	1.51	1.87	0.07	1.74
Weight (kg)	54.50	90.00	8.36	74.93
BMI (kg/m ²)	16.98	35.83	3.60	24.85
Wexner questionnaire scale	2.00	30.00	7.25	13.96
Resting anal pressure (mm Hg)	38.00	157.00	24.27	82.99
Rectal pressure during coughing (mm Hg)	7.00	92.00	17.84	47.61
Anal pressure during coughing (mm Hg)	18.00	220.00	42.58	107.43
Maximum pressure during squeezing (mm	0.00	300.00	62.00	115.30
Hg)				
Pressure during squeezing (mm Hg)	1.00	241.00	52.09	72.33
Threshold of anorectal inhibitory reflex (cm ³)	0.07	50.00	9.73	17.88
Defecation index (ratio)	0.01	1.91	0.44	0.60

The receiver operating characteristic (ROC) curve (SPSS version 22) was used to measure (TP, TN, FP, FN) and evaluate the specificity and sensitivity of these two algorithms with real variables from primary data. The area under the curve was calculated by SPSS version 22 for both groups (Tables 5-7; Figures 10 and 11).

Table 5. Area under the curve of two analytical methods across both groups.

Parameter	Male	Group	Female Group		
	SPSS	LR-SML	SPSS	LR-SML	
Resting anal pressure (mm Hg)	0.690	0.799	0.500	0.491	
Rectal pressure during coughing (mm Hg)	0.874	0.862	0.745	0.820	
Anal pressure during coughing (mm Hg)	0.902	0.860	0.755	0.839	
Maximum pressure during squeezing (mm	0.922	0.884	0.867	0.867	
Hg)					
Pressure during squeezing (mm Hg)	0.861	0.865	0.556	0.882	
Threshold of anorectal inhibitory reflex (cm ³)	0.858	0.880	0.859	0.867	
Defecation index (ratio)	0.849	0.819	0.881	0.896	

Both analytical methods showed good predictive performance for most parameters.

The accuracy percentage was calculated using following equation (7):

$$Accuracy = \frac{\text{number of correct classification}}{\text{number of total clasification}} x \ 100$$

The detection performance of the model was evaluated using two metrics: sensitivity and specificity, which reflect the model's ability to correctly identify positive cases and correctly reject negative cases, respectively (8).

These metrics are defined as:

$$Sensitivity = \frac{TP}{TP + FN}$$
$$Specificity = \frac{TN}{TN + FP}$$

Where TP (true positive) refers to the number of correctly predicted event cases, TN (true negative) to the number of correctly predicted non-event cases, FP (false positive) to the number of incorrectly predicted event cases, and FN (false negative) to the number of incorrectly predicted non-event cases.

 Table 7. Performance comparison between LR-SML and SPSS (neural network) models for female participants using ROC curve analysis

Parameter	LR-SML Model								SPSS Model						
	TP	TN	FP	FN	Sensitivity	Specificity	ACC	TP	TN	FP	FN	Sensitivity	Specificity	ACC	
Resting anal pressure (mm Hg)	225	4	5	6	0.97	0.40	0.533	228	1	8	3	0.99	0.10	0.531	
Rectal pressure during coughing (mm Hg)	216	7	8	9	0.96	0.44	0.581	226	2	8	4	0.98	0.18	0.573	
Anal pressure during coughing (mm Hg)	215	8	7	10	0.96	0.50	0.575	223	5	5	7	0.97	0.45	0.567	
Maximum pressure during squeezing (mm Hg)	212	5	16	7	0.97	0.23	0.678	215	7	9	9	0.96	0.41	0.670	
Pressure during squeezing (mm Hg)	196	8	26	10	0.95	0.23	0.799	194	9	26	11	0.95	0.25	0.785	
Threshold of anorectal inhibitory reflex (cm ³)	190	19	10	21	0.90	0.63	0.502	192	15	16	17	0.92	0.47	0.671	
Defecation index (ratio)	178	16	28	18	0.91	0.36	0.822	187	16	19	18	0.91	0.44	0.824	

Table 7. Performance comparison between LR-SML and SPSS (neural network) models for male participants using ROC curve analysis

Parameter	LR-SML Model								SPSS Model							
	TP	TN	FP	FN	Sensitivity	Specificity	ACC	TP	TN	FP	FN	Sensitivity	Specificity	ACC		
Resting anal pressure (mm Hg)	225	4	5	6	0.97	0.40	0.515	233	0	5	2	0.99	0.00	0.519		
Rectal pressure during coughing (mm Hg)	208	11	8	13	0.94	0.55	0.562	221	2	13	4	0.98	0.13	0.562		
Anal pressure during coughing (mm Hg)	213	9	7	11	0.95	0.53	0.563	222	2	12	4	0.98	0.13	0.557		
Maximum pressure during squeezing (mm Hg)	204	8	18	10	0.95	0.30	0.691	201	10	17	12	0.94	0.36	0.658		
Pressure during squeezing (mm Hg)	199	10	19	12	0.94	0.33	0.790	202	11	14	13	0.94	0.42	0.792		
Threshold of anorectal inhibitory reflex (cm ³)	189	18	13	20	0.90	0.56	0.500	182	22	12	24	0.88	0.63	0.683		
Defecation index (ratio)	204	8	18	10	0.95	0.30	0.820	197	14	13	16	0.92	0.50	0.821		

As shown in Tables 6 and 7, both software systems demonstrate high true positive rates with good sensitivity across both groups, along with relatively good accuracy (Acc). Sensitivity and specificity exhibit an inverse relationship—as sensitivity increases, specificity typically decreases, and vice versa. Highly sensitive tests tend to identify positive cases in patients with the condition, while highly specific tests effectively exclude the condition in unaffected patients. These findings suggest that both software tools can effectively predict functional constipation difficulties in elderly populations.

Figure 10. Sensitivity and 1-specificity comparison between two software programs for initial outcome prediction in female participants. The LR-SML software demonstrated superior performance compared to the SPSS (Neural Network) software.

Figure 11. Comparison of sensitivity and 1-specificity changes between the two software programs for predicting initial outcomes in male participants. The LR-SML software performance was comparable to the SPSS (Neural Network) software.

Discussion

This study employed a machine learning approach to develop a predictive model for estimating functional constipation variables in elderly subjects using age, weight, height, BMI, and Wexner questionnaire scores, which demonstrated moderate to good correlations with outcome measures. Our findings indicate that the LR-SML software offers user-friendly operation and reliable predictive capability, consistent with previous applications in predicting brain wave activities in tinnitus patients and estimating lumbar muscle activity in non-specific back pain (9,10). The model's sensitivity criteria effectively identified functional constipation issues in elderly populations. While this study was limited to comparing LR-SML with SPSS (Neural Network), future research should include comparisons with other machine learning approaches like random forests. Designed specifically for clinicians and medical students, our model maintains simplicity as a key feature. Further external validation through multi-step input data from diverse populations (both younger and older subjects) is needed to enhance and generalize this software tool.

Conclusion

The results demonstrate that LR-SML provides clinically relevant predictions for functional constipation in elderly populations. The Excel-based implementation offers greater accessibility compared to other software options, and relative to SPSS (Neural Network), requires less prediction time without compromising outcome variables. Future studies should explore deep learning enhancements and applications to other disabilities in this population. While this research focused exclusively on elderly subjects with functional constipation, we recommend additional investigations involving younger populations (both with and without functional constipation) and elderly subjects without constipation.

Authors contributions

Each author was involved in data analysis and contributed equally to the writing of the manuscript.

Conflict of interest

The authors declare no conflicts of interest.

Funding

This study was funded by Tehran University of Medical Sciences.

References

- 1. Kolachalama VB, Garg PS. Machine learning and medical education. NPJ digital medicine. 2018 Sep 27;1(1):1-3.
- 2. Wassan JT, Zheng H, Wang H. Role of Deep Learning in Predicting Aging-Related Diseases: A Scoping Review. Cells. 2021 Nov;10(11):2924.
- Grunhut J, Wyatt AT, Marques O. Educating Future Physicians in Artificial Intelligence (AI): An Integrative Review and Proposed Changes. Journal of Medical Education and Curricular Development. 2021 Sep;8:23821205211036836.
- 4. Chen B. From Logistic Regression to Deep Learning: Machine Learning Advances for Credit Card Churn. IJERMCA. 2024;13(2).
- 5. Ishii H, Kimino K, Aljehani M, Ohe N, Inoue M. An early detection system for dementia using the M2 M/IoT platform. Procedia Computer Science. 2016 Jan 1; 96:1332-40.

- Ju R, Hu C, Li Q. Early diagnosis of Alzheimer's disease based on resting-state brain networks and deep learning. IEEE/ACM transactions on computational biology and bioinformatics. 2017 Nov 23;16(1):244-57.
- 7. Rescio G, Leone A, Siciliano P. Supervised machine learning scheme for electromyographybased pre-fall detection system. Expert Syst Appl. 2018;100:95-105.
- 8. Kutrani H, Eltalhi S, Ashleik N, editors. Predicting factors influencing survival of breast cancer patients using logistic regression of machine learning. The 7th International Conference on Engineering & MIS 2021; 2021.
- 9. Mohsen S, Sadeghijam M, Talebian S, Pourbakht A. Use of some relevant parameters for primary prediction of brain activity in idiopathic Tinnitus based on a machine learning application. Audiol Neurotol. June 16, 2023;6-11.
- 10. Salamat S, Montazeri V, Talebian S. Predicting trunk muscle activity in chronic low back pain: Development of a supervised machine learning model. J Mod Reh.2025;10-11