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Abstract

Background: Machine learning software programs are of great interest at the scientific and
applied levels in medical sciences today. There are various applications for these software
programs in the field of diagnosis and treatment of diseases. Elderly people can benefit
significantly from these software programs due to their physical limitations. The aim of this study
is to develop and evaluate a supervised machine learning model for predicting functional
constipation (FC) in the elderly.

Methods: The specific software in excel was designed as logistic regression supervised machine
learning (LR-SML 402). This software development was based on a secondary analysis of source
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data, exclusive articles, and doctoral dissertations of elderly individuals with FC who underwent
colorectal evaluations using advanced laboratory equipment. The correlation between labeled data
and the output data of colorectal parameters was measured using 480 datasets from published
sources and research labs. Strong correlations were obtained between variables such as age, body
mass index, and Wexner's questionnaire with indicators of FC.

Results: To validate the performance of LR-SML 402, the results were compared with those of a
neural network in SPSS software. The model designed in Excel software demonstrated strong
capability in terms of sensitivity, specificity, and area under the curve (AUC).

Conclusion: The findings show that the supervised machine learning approach using logistic
regression may provide meaningful clinical predictions in determining laboratory indicators of FC
in the elderly. This approach can reduce the time and cost of diagnosis.
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Introduction:

Artificial intelligence (Al) is one of the most important consequences of the development of
extensive software technology in applied engineering fields. Today, this technique is ready to help
patients, students, professors and the treatment and health of society (1). Recently, artificial
intelligence methods are being used to predict diseases and aging problems and help clinical
professionals make decisions based on medical records. The improvement of artificial intelligence,
as one of the latest generations of modern technologies, has made rapid progress and plays an
important role in predicting and classifying problems related to the elderly. (2) Many scientists in
clinical and therapeutic research widely use this method for diagnosis, treatment, prediction as
well as for improving and effectiveness of health care. Important and unprecedented developments
in this field, especially in the discussion of machine learning, are taking place. Despite the
development of machine learning, there are still limitations in the curricula of medical and
rehabilitation schools in the world, especially at the graduate level, so training and familiarization
of academic staff, students and other teaching staff is essential (3). On the other hand, with the
increase in the number of adults in society, which is expected to increase by 56% in the next 15
years (seniors over 60 years old) and the number of "elderly" (over 80 years old) will triple by
2050, therefore, with the increase in the number of elderly people, sphincter problems will be one
of the most important problems and limitations of the elderly.

Logistic regression supervised machine learning (LR-SML) is a good interpretability and low
computational cost, and it’s considered as a classification algorithm for high-dimensional data, it
is a statistical method that predicts the probability of an outcome based on one or more predictor
variables (4).

Various machine learning approaches have been used to identify the onset of dementia and
cognitive problems. Some research has focused on the Activities of Daily Living (ADL) of the
elderly to predict their cognitive level. Deep learning techniques can be useful for discovering
anomalies in the normal behavior of people (5). Ju (2017) utilized deep learning with brain network
data and clinically relevant information (including the subject's age, gender, and ApoE gene) to
construct a targeted auto-encoder network. This network successfully distinguished normal aging
from mild cognitive impairment and early-stage Alzheimer's disease. The model presented by Ju
(2017) is more stable and reliable compared to traditional methods and can help predict and prevent
Alzheimer's in its early stages (6). According to the review of studies conducted in this field, no
research has focused on predicting indicators of functional constipation in the elderly. The purpose
of this research is to design a logistic regression supervised machine learning (LR-SML) program



based on artificial intelligence to predict the rate and extent of functional constipation in the elderly
without performing time-consuming, costly.

Methods:

1-Eldely subjects:

The prediction of functional constipation values was done in 480 cases in both male (240 case)
and female (240 case) groups separately. The primary data (input layer) were recorded from
previous population (retrospective study) of elder subjects (thesis data, clinics in Tehran town in
this area). The ethical approve accepted from Theran University of Medical Sciences
(IR.TUMS.MEDICINE.REC.1402.682).

A Consolidated Standards of Reporting Trials (CONSORT) flow diagram illustrates participant
progression from enrolment to analysis (figure 1).
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Figure 1. Consolidated Standards of Reporting of two different machine learning software
analysis.

2- Logistic regression supervised machine learning:

Logistic regression supervised machine learning (LR-SML) was used for prediction of rest anal
pressure, rectal pressure during coughing, anal pressure during coughing, maximum pressure
during squeezing, pressure during squeezing, threshold of anorectal inhibitory reflex and
defecation index as output data. These parameters changes based on age, weight, height, body
mass index and Wexner questionnaire as input data, and there are moderate to good correlations
between input and output data by previous sources and documents (tables 1,2).

Table 1. Correlations between of input layers and primary output layer variables in 240 cases
(females)

Input layer
Primary output layer Age Height | Weight | BMI
Wexner
(year) (m) (Kog) (Kg/m?)
Rest anal pressure (mm HgQ) 0.709 -0.222 | 0.691 0.631 0.916

Rectal pressure during coughing (mm Hg) | -0.653 0.182 -0.651 | -0.579 |-0.956

Anal pressure during coughing (mm Hg) -0.664 0.192 -0.684 | -0.607 | -0.953

Maximum pressure during squeezing (mm -0.648 0.181 0648 |-0576 |-0959
Ha) : : : . :

Pressure during squeezing (mm Hg) -0.627 0.166 -0.610 |-0.539 |-0.945




;I;r:rl]’%shold of anorectal inhibitory reflex -0.629 0.140 0665 |-0560 |-0.923
Defecation Index (Ratio) -0.573 0.170 -0.594 | -0.531 |-0.944

Table 2. Correlations between of input layers and primary output layer variables in 240 cases

(males)

Input layer

Primary output layer Age Height | Weight | BMI
Wexner

(year) (m) (Kg) (Kg/m?)
Rest anal pressure (mm Hg) 0.661 -0.152 | 0.632 0.584 0.955
Rectal pressure during coughing (mm Hg) | -0.602 0.121 -0.637 | -0.567 |-0.914
Anal pressure during coughing (mm Hg) -0.572 0.110 -0.597 |-0.528 |-0.858
IIEI/I;)XImum pressure during squeezing (mm L0572 0.119 0611 |-0545 |-0865
Pressure during squeezing (mm Hg) -0.553 0.137 -0.645 |-0.582 |-0.839
;I;f;nr%shold of anorectal inhibitory reflex -0.616 0.121 0792 |-0683 |-0.893
Defecation Index (Ratio) -0.539 0.165 -0.771 | -0.699 |-0.878

We use two independent softwares 1- Logistic Regression Supervised Machine Learning in excel
sheet, 2- SPSS (Neural Network, Multilayer Perception),
The sensitivity and specificity of LR-SML software were evaluated and compare with Neural
Network, Multilayer Perception in SPSS softwares.
Dedicated Non-Negative Matrix Factorization (NMF) equations were written in excel sheet to
calculate multiple regression between input variables and prediction in the Input Layer.
Nonnegative matrix factorization (NMF) is a technique where a matrix V. with nonnegative entries
is factored into two matrices W and H (Figure 2).
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Figure 2. Nonnegative matrix factorization (NMF) diagram, Matrix multiplication can be
implemented as computing the column vectors of V as linear combinations of the column
vectors in W using coefficients supplied by columns of H. That is, each column of V can be

computed as follows: V=W.H

The equations of NMF are:

a) MINVERSE (MMULT (TRANSPOSE (A2:F241), A2:F241))




A2:F241 is the input layer (intercept “A”, age “B”, weight “C”, height “D” MBI “E” and Wexner
“F”) for 240 cases in excel sheet (Figure 3).
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Figure 3. the input layer (Age, Height, Weight, BMI, Wexner) and Non-Negative Matrix
Factorization (NMF) equations (MINVERSE (MMULT (TRANSPOSE (A2:F241),
A2:F241)) in excel sheet.

b) MMULT (P2:U7, MMULT (TRANSPOSE (A2:F241), H2:N241))

P2:U7 is for MINVERSE (MMULT (TRANSPOSE (intercept...)) and H2:N241 is for primary
output layer (rest anal pressure “H”, rectal pressure during coughing “I”, anal pressure during
coughing “J”, maximum pressure during squeezing “K”, pressure during squeezing “L”, threshold
of anorectal inhibitory reflex” M” and defecation index” N” in excel sheet Figure 4).

H ©-~ D & BB X i3 [ B Y 8 = Software of LR-ML case- 2024 xlsx - Excel
File Home  Insert  Pagelayout  Formulas  Data  Review View Help  PowerPivst @ Tell me what you want to do
w2 A Fe || {=MIMULT(P2:U7, MMULT({TRANSPOSE(A2:F241),H2:N241} )}

W X Y z AA AB AC
1 |Rest anal pressi Rectal Pressure Anal Pressure ¢ Maximum Pres: Pressure during Threshold of Ar Defecation Index
2 | -31.4023269(| 78.44501263 121.1494878 175.6439099 75.4065239 -47.6575817 1.85270123
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Figure 4. The hidden layer measured via MMULT (P2:U7, MMULT (TRANSPOSE
(A2:F241), H2:N241))



¢) MMULT ($A82: $F$241, W2:W7 ...AC7)

W2:W7 is multiple regression values (Hidden layer) for detection and predict the output layers
depended to number of them (w, X, y, z, aa, ab, ac). This equation can predict all of output layer at
AE — AK columns in excel sheet (Figure 5).
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Figure 5. The output layer measured by MMULT ($A$2: $F$241, W2:W7)) equation for each

column AE to AK

Then, from this particular controlled matrix, an algorithm was used to determine the best estimate
between inputs and outputs (Figure 6).

Input Layer Hidden Layer Output Layer m

Age 80 Rest anal pressure 109.149 Abnormal
Height 1.75 Rectal Pressure during coughing 30.729 Normal
Weight | 78.3 Anal Pressure during coughing 67.954 Normal

BMI 25.57 Maximum Pressure during squeezing 59.870 Weakness

Wexner 21.0 Pressure during squeezing 31.438 Weakness

Gender 2.0 Threshold of Anorectal inhibitory reflex | 9.869 Weakness
Defecation Index 0.350 Normal

Logistic Regression

Supervised

Machine Learning

Version 402

- Synaptic Weigh >0

Synaptic Weigh <0




Figure 6. The software of logistic regression supervised machine learning (LR-SML).

2 - Software under SPSS environment in the Neural Networks section

In all versions of SPSS software, there is this option (Neural Networks) that by evaluating the
number of input layers and initial output, it can give an estimate of the output layer along with the
neural network. In this software, based on the Multilayer Perception option and in the Partitions
section, by selection 70% training and 30% testing, prediction of output layer will be measured.
With this ability we predicted functional constipation for comparison to software of LR-SML
under excel sheet. Then the software gave an image of the hidden layers and calculation matrix
with multiple regression calculations and finally stored the predicted values in new columns in the
input file (Figures 7 and 8).
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Figure 7. The software of SPSS (Neural Networks). The setting step in the SPSS softwares to
estimate and predict the output layer based on the input layer and the initial output layer.
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Figure 8. The output in the SPSS software along with the neural cells of the hidden layer and
the inhibitory or excitatory effect on these neurons from the input layer and their effect on
the predicted of output layer.

Results:

As mentioned earlier, there were moderate to good correlations between the initial inputs and
outputs, then the appropriate algorithm was written using supervised machine learning methods in
the Excel environment. Various criteria have been used and discussed to verify and validate this
algorithm. A comparative analysis between the radial basis function network machine learning
algorithm and logistic multiple regression in SPSS using labeled data for training and testing was
performed (Figure 9).

The mean and standard deviations of two groups (Female -Male) measured (tables 3,4).

Input Layer | | Hidden Layer‘ Output Layer‘

Age [+ Logistic Regressionvia Excel | / * Restanal pressure
s software
Height * Rectal Pressure during coughing
- * Neural network via SPSS
Weight * Anal Pressure during coughin
['4 Softuie A ssure during coughing
— BMI — . * Maximum Pressure during squeezing
* Mult Regressionvia Python
Wexner software * Pressure during squeezing

* Threshold of Anorectal inhibitory reflex

\ * Defecation Index




Figure 9. The Three stages for design of ML software

Table 3. Mean (SD, Max, Min) of 240 cases (female)

Mean SD Maximum | Minimum
Age (year) 65.13 8.21 79.00 49.00
Height (m) 1.72 0.06 1.82 1.51
Weight (Kg)( 71.98 7.66 85.10 56.50
BMI (Kg/m2)( 24.38 3.61 36.18 17.95
Wexner guestionnaire scale 17.24 7.79 30.00 2.00
Rest anal pressure (mm Hg) 87.82 23.36 | 176.00 43.00
Rectal pressure during coughing (mm Hg) 41.18 13.53 | 70.00 14.00
Anal pressure during coughing (mm Hg) 86.30 27.61 | 147.00 21.00
II\_{Ig;;\)leum pressure during squeezing (mm 8736 3953 | 183.00 12.00
Pressure during squeezing (mm Hg) 51.55 33.96 | 137.00 1.00
;I;kr!gihold of anorectal inhibitory reflex 16.60 8.85 44.00 0.00
Defecation Index (Ratio) 0.55 0.42 1.70 0.00

Table 4. Mean (SD, Max, Min) of 240 cases (male)

Mean SD Maximum | Minimum
Age (year) 65.13 8.20 79.00 49.00
Height (m) 1.74 0.07 1.87 1.51
Weight (Kg)( 74.93 8.36 90.00 54.50
BMI (Kg/m2)( 24.85 3.60 35.83 16.98
Wexner questionnaire scale 13.96 7.25 30.00 2.00
Rest anal pressure (mm Hg) 82.99 24.27 | 157.00 38.00
Rectal pressure during coughing (mm Hg) 47.61 17.84 | 92.00 7.00
Anal pressure during coughing (mm Hg) 107.43 | 42.58 | 220.00 18.00
Maximum pressure during squeezing (mm | 115.30 | 62.00 | 300.00 0.00
Hg)
Pressure during squeezing (mm Hg) 72.33 52.09 |241.00 1.00
Threshold of anorectal inhibitory reflex | 17.88 9.73 50.00 0.07
(cm3)
Defecation Index (Ratio) 0.60 0.44 1.91 0.01

The receiver operating characteristic ROC curve (SPSS, 22) was used to measured (TP, TN, FP,
FN) and evaluate the specificity and sensitivity of these two software with real variables from




primary data. The area under the curve was measured by SPSS version 22 for both groups (tables
5-7) (Figures 10 and 11).

Table 5. The area under curve of two software in both groups.

Female Male

LR-SML SPSS | LR-SML | SPSS
Rest anal pressure (mm Hg) 0.491 0.500 | 0.799 0.690
Rectal pressure during coughing (mm Hg) 0.820 0.745 | 0.862 0.874
Anal pressure during coughing (mm Hg) 0.839 0.755 | 0.860 0.902
Maximum pressure during squeezing (mm | 0.867 0.867 | 0.884 0.922
Ho)
Pressure during squeezing (mm Hg) 0.882 0.556 | 0.865 0.861
Threshold of anorectal inhibitory reflex | 0.867 0.859 | 0.880 0.858
(cm®)
Defecation Index (Ratio) 0.896 0.881 |0.819 0.849

Two software have good area under curve.
The accuracy percentage was calculated with the following equation (7):

number of correct classification
Accuracy = — x 100
number of total clasification

The detection performance of the model was evaluated using two metrics sensitivity and
specificity which are indicative of model’s ability to correctly reject negative false instances and
avoiding false positive detections respectively (8).

The equations of the metrics are:

S itivity = L
ensitivity = TP + FN
Specificity = TN
pecificity = N + FP

Where the TP (true positive) indicates the number of correct predicted event values, TN (true
negative) indicates the number of correct predicted non-event values, FP (false positive) indicates
incorrectly predicted event values and FN (false negative) indicates numbers of incorrect predicted
non-events values.

Table 6. The ROC curve of the two software LR-SML and SPSS, (female).

| LR-SML | TP | TN | FP [ FN | Sensitivity | Specificity | ACC |




Rest Anal Pressure 225 | 4 5 6 0.97 0.40 0.533
Rectal Pressure during Coughing 216 |7 |8 |9 0.96 0.44 0.581
Anal Pressure during Coughing 21518 |7 |10 |0.96 0.50 0.575
Maximum — Pressure  during | ,1» |5 |16 |7 |07 0.23 0.678
Squeezing
Pressure during Squeezing 196 |8 |26 |10 |0.95 0.23 0.799
'Fl;i;aiihold of Anorectal Inhibitory 190 119 110 121 |0.90 0.63 0.502
Defecation reflex 178 |16 |28 |18 (091 0.36 0.822
SPSS (Nural Network) TP | TN | FP | EN | Sensitivity | Specificity | ACC
Rest Anal Pressure 228 |1 8 3 0.99 0.10 0.531
Rectal Pressure during Coughing 226 |2 |8 |4 0.98 0.18 0.573
Anal Pressure during Coughing 223 |5 |5 |7 0.97 0.45 0.567
Maximum — Pressure  during| 5,5 |7 g |9 |06 0.41 0.670
Squeezing
Pressure during Squeezing 194 |9 |26 [11 |0.95 0.25 0.785
-Ige]]rIZihOId of Anorectal Inhibitory 192 115 116 117 1092 0.47 0671
Defecation reflex 187 |16 |19 |18 |0.91 0.44 0.824
Table 7. The ROC curve of the two software LR-SML and SPSS, (male).
LR-SML TP | TN | FP | FN | Sensitivity | Specificity | ACC
Rest Anal Pressure 225 |4 |5 |6 0.97 0.40 0.515
Rectal Pressure during Coughing | 208 |11 |8 |13 |0.94 0.55 0.562
Anal Pressure during Coughing 213 |9 |7 |11 |0.95 0.53 0.563
Maximum  Pressure  during | 5,4 | g |18 |10 |0.95 0.30 0.691
Squeezing
Pressure during Squeezing 199 |10 [19 |12 | 0.94 0.33 0.790
EZQiihold of Anorectal Inhibitory 189 118 113 |20 1090 0.56 0.500
Defecation reflex 204 | 8 18 |10 ]0.95 0.30 0.820
SPSS (Nural Network) TP | TN | FP | FN | Sensitivity | Specificity | ACC
Rest Anal Pressure 233 |0 5 |2 0.99 0.00 0.519
Rectal Pressure during Coughing | 221 | 2 13 | 4 0.98 0.13 0.562
Anal Pressure during Coughing 222 | 2 12 | 4 0.98 0.13 0.557
Maximum  Pressure  during | 54, | 14 |17 |12 |0.04 0.36 0.658
Squeezing
Pressure during Squeezing 202 |11 |14 |13 |0.94 0.42 0.792
gl;a?;hold of Anorectal Inhibitory 182 |22 112 |24 |0.88 0.63 0.683
Defecation reflex 197 |14 |13 |16 |0.92 0.50 0.821




As can be seen in tables 6 and 7, both softwares have high true positive with good sensitivity in
the two groups, and both softwares have relatively good accuracy (Acc).
Sensitivity and specificity are inversely related, as sensitivity increases, specificity tends to
decrease, and vice versa. Highly sensitive tests will lead to positive findings for patients with a
disease, whereas highly specific tests will show patients without a finding having no disease.

These results suggest this two software can predict the elderly difficulty in functional constipation.
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Figure 10. Comparison of changes in sensitivity and 1-specificity in two software programs

for predicting the initial outcome in the female group.

LR-SML software performed relatively better than SPSS (Neural Network) software.
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Figure 11. Comparison of changes in sensitivity and 1-specificity in two software programs

for predicting the initial outcome in the male group.
LR-SML software performed relatively is similar to SPSS (Neural Network) software.

Discussion



In this study, a machine learning approach was used to create a prediction model. Estimation of
functional constipation variables in elderly subjects using age, weight, height, BMI and Wexner
questionnaire (with moderate to good correlation between them and outcome measures in
functional constipation. These results showed that the LR-SML software is user friendly and
simple prediction ability and is consistent with previous studies that used LR-SML for subjects
with tinnitus to predict brain waves activities and non-specific back pain to estimate lumbar muscle
activity (9,10). The sensitivity criteria show that this model correctly identifies the problems of the
elderly in functional constipation. In this study, we had limitations to compare other machine
learning software such as random forests and we suggest that it be done for future studies, also our
model was very simple and designed for clinicians and medical students.

There are need new revise for external validation by several step input data at other sources
(younger and elder subjects) to compare and develop this simple software.

Conclusion

Results of this study suggest that LR-SML may provide relative good clinically relevant,
predictions for defining functional constipation of elderly subjects. The writing of this software in
excel sheet is very easy than other softwares and in comparison, to SPSS (Neural Network)
software may be have need low time to predication and it is not limitation in outcome variables.
Further studies are necessary to improve deep learning and for other disability of above population.
This study was just on elder subjects with problems in FC and we suggest more research in younger
group with and without FC and elder subjects without FC.
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