Research Article

Logistic Regression Analysis of Functional Constipation Factors in the Elderly

Zeinab Shiravi1^{*}, Zahra Abdollahzade2, Saeed Talebian3, Fatemeh Alsadat Mirzadeh4

- 1- Department of Elderly health, T School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran.
- 2- Department of Physiotherapy, Faculty of Paramedical and Rehabilitation Sciences, Mashhad University of Medical Sciences, Mashhad, Iran.
- 3- Department of Physiotherapy, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran.
- 4- Department of Geriatric Medicine, Ziaeian Hospit, Tehran University of Medical Sciences, Tehran, Iran.

*Corresponding author: Zeinab Shiravi, Ph.D, Assistant Professor

Department of Elderly health, T School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran. Email: zshiravi@sina.tums.ac.ir

Email: <u>zshiravi(*a*)sina.tums.ac.ir</u> **Tel:** 09123710970

ORCID ID:

Zeinab Shiravi: 0000-0003-3996-861X Zahra Abdollahzade: 0000-0002-4526-1170 Saeed Talebian: 0000-0002-4945-8085 Fatemeh Alsadat Mirzadeh: 0000-002-4307-0282

Article info:

Received: 8 Mar 2025 Accepted: 3 Jun 2025

Citation: Shiravi Z, Abdollahzade Z, Talebian S, Alsadat Mirzadeh F. Designing Logistic Regression Supervised Machine Learning Software in the Evaluation of Physiological and Clinical Factors in Functional Constipation in the Elderly. Journal of Modern Rehabilitation. 2025;19(4):?-?

Running title: LR Analysis of FC Factors in the Elderly

Abstract

Background: Machine learning software programs are of great interest at the scientific and applied levels in medical sciences today. There are various applications for these software programs in the field of diagnosis and treatment of diseases. Elderly people can benefit significantly from these software programs due to their physical limitations. The aim of this study is to develop and evaluate a supervised machine learning model for predicting functional constipation (FC) in the elderly.

Methods: The specific software in excel was designed as logistic regression supervised machine learning (LR-SML 402). This software development was based on a secondary analysis of source

data, exclusive articles, and doctoral dissertations of elderly individuals with FC who underwent colorectal evaluations using advanced laboratory equipment. The correlation between labeled data and the output data of colorectal parameters was measured using 480 datasets from published sources and research labs. Strong correlations were obtained between variables such as age, body mass index, and Wexner's questionnaire with indicators of FC.

Results: To validate the performance of LR-SML 402, the results were compared with those of a neural network in SPSS software. The model designed in Excel software demonstrated strong capability in terms of sensitivity, specificity, and area under the curve (AUC).

Conclusion: The findings show that the supervised machine learning approach using logistic regression may provide meaningful clinical predictions in determining laboratory indicators of FC in the elderly. This approach can reduce the time and cost of diagnosis.

Keywords: Chronic constipation, elderly, supervised logistic machine learning

Introduction:

Artificial intelligence (AI) is one of the most important consequences of the development of extensive software technology in applied engineering fields. Today, this technique is ready to help patients, students, professors and the treatment and health of society (1). Recently, artificial intelligence methods are being used to predict diseases and aging problems and help clinical professionals make decisions based on medical records. The improvement of artificial intelligence, as one of the latest generations of modern technologies, has made rapid progress and plays an important role in predicting and classifying problems related to the elderly. (2) Many scientists in clinical and therapeutic research widely use this method for diagnosis, treatment, prediction as well as for improving and effectiveness of health care. Important and unprecedented developments in this field, especially in the discussion of machine learning, are taking place. Despite the development of machine learning, there are still limitations in the curricula of medical and rehabilitation schools in the world, especially at the graduate level, so training and familiarization of academic staff, students and other teaching staff is essential (3). On the other hand, with the increase in the number of adults in society, which is expected to increase by 56% in the next 15 years (seniors over 60 years old) and the number of "elderly" (over 80 years old) will triple by 2050, therefore, with the increase in the number of elderly people, sphincter problems will be one of the most important problems and limitations of the elderly.

Logistic regression supervised machine learning (LR-SML) is a good interpretability and low computational cost, and it's considered as a classification algorithm for high-dimensional data, it is a statistical method that predicts the probability of an outcome based on one or more predictor variables (4).

Various machine learning approaches have been used to identify the onset of dementia and cognitive problems. Some research has focused on the Activities of Daily Living (ADL) of the elderly to predict their cognitive level. Deep learning techniques can be useful for discovering anomalies in the normal behavior of people (5). Ju (2017) utilized deep learning with brain network data and clinically relevant information (including the subject's age, gender, and ApoE gene) to construct a targeted auto-encoder network. This network successfully distinguished normal aging from mild cognitive impairment and early-stage Alzheimer's disease. The model presented by Ju (2017) is more stable and reliable compared to traditional methods and can help predict and prevent Alzheimer's in its early stages (6). According to the review of studies conducted in this field, no research has focused on predicting indicators of functional constipation in the elderly. The purpose of this research is to design a logistic regression supervised machine learning (LR-SML) program

based on artificial intelligence to predict the rate and extent of functional constipation in the elderly without performing time-consuming, costly.

Methods:

1-Eldely subjects:

The prediction of functional constipation values was done in 480 cases in both male (240 case) and female (240 case) groups separately. The primary data (input layer) were recorded from previous population (retrospective study) of elder subjects (thesis data, clinics in Tehran town in this area). The ethical approve accepted from Theran University of Medical Sciences (IR.TUMS.MEDICINE.REC.1402.682).

A Consolidated Standards of Reporting Trials (CONSORT) flow diagram illustrates participant progression from enrolment to analysis (figure 1).

Figure 1. Consolidated Standards of Reporting of two different machine learning software analysis.

2- Logistic regression supervised machine learning:

Logistic regression supervised machine learning (LR-SML) was used for prediction of rest anal pressure, rectal pressure during coughing, anal pressure during coughing, maximum pressure during squeezing, pressure during squeezing, threshold of anorectal inhibitory reflex and defecation index as output data. These parameters changes based on age, weight, height, body mass index and Wexner questionnaire as input data, and there are moderate to good correlations between input and output data by previous sources and documents (tables 1,2).

Table 1. Correlations between of input layers and primary output layer variables in 240 cases (females)

	Input layer							
Primary output layer	Age (year)	Height (m)	Weight (Kg)	BMI (Kg/m ²)	Wexner			
Rest anal pressure (mm Hg)	0.709	-0.222	0.691	0.631	0.916			
Rectal pressure during coughing (mm Hg)	-0.653	0.182	-0.651	-0.579	-0.956			
Anal pressure during coughing (mm Hg)	-0.664	0.192	-0.684	-0.607	-0.953			
Maximum pressure during squeezing (mm Hg)	-0.648	0.181	-0.648	-0.576	-0.959			
Pressure during squeezing (mm Hg)	-0.627	0.166	-0.610	-0.539	-0.945			

Threshold of anorectal inhibitory reflex (cm ³)	-0.629	0.140	-0.665	-0.560	-0.923
Defecation Index (Ratio)	-0.573	0.170	-0.594	-0.531	-0.944

Table 2. Correlations between of input layers and primary output layer variables in 240 cases (males)

	Input layer								
Primary output layer	Age	Height	Weight	BMI	Woynor				
	(year)	(m)	(Kg)	(Kg/m^2)	vv exilei				
Rest anal pressure (mm Hg)	0.661	-0.152	0.632	0.584	0.955				
Rectal pressure during coughing (mm Hg)	-0.602	0.121	-0.637	-0.567	-0.914				
Anal pressure during coughing (mm Hg)	-0.572	0.110	-0.597	-0.528	-0.858				
Maximum pressure during squeezing (mm	0.572	0.110	0.611	0.545	0.965				
Hg)	-0.372	0.119	-0.011	-0.343	-0.805				
Pressure during squeezing (mm Hg)	-0.553	0.137	-0.645	-0.582	-0.839				
Threshold of anorectal inhibitory reflex	0.616	0.121	0.702	0.692	0.802				
(cm ³)	-0.010	0.121	-0.792	-0.085	-0.095				
Defecation Index (Ratio)	-0.539	0.165	-0.771	-0.699	-0.878				

We use two independent softwares 1- Logistic Regression Supervised Machine Learning in excel sheet, 2- SPSS (Neural Network, Multilayer Perception),

The sensitivity and specificity of LR-SML software were evaluated and compare with Neural Network, Multilayer Perception in SPSS softwares.

Dedicated Non-Negative Matrix Factorization (NMF) equations were written in excel sheet to calculate multiple regression between input variables and prediction in the Input Layer.

Nonnegative matrix factorization (NMF) is a technique where a matrix V with nonnegative entries is factored into two matrices W and H (Figure 2).

Figure 2. Nonnegative matrix factorization (NMF) diagram, Matrix multiplication can be implemented as computing the column vectors of V as linear combinations of the column vectors in W using coefficients supplied by columns of H. That is, each column of V can be computed as follows: V=W.H

The equations of NMF are:

a) MINVERSE (MMULT (TRANSPOSE (A2:F241), A2:F241))

A2:F241 is the input layer (intercept "A", age "B", weight "C", height "D" MBI "E" and Wexner "F") for 240 cases in excel sheet (Figure 3).

H	5 ∙ ∂`	C 🖻 🖻	8 B B	5 R - 1	¶ A ,		Software of LF	R-ML	H	5 •∂∘	C 🖻 🖬	አቬៃ		र २ -		Software of L	.R-ML
File	Home	Insert Pa	ige Layout F	Formulas Dai	ta Review	View He	elp Power	Pivot	File	e Home	Insert Pa	ige Layout 🛛 f	Formulas Di	ata Review	View H	lelp Power	r Pivot
M4		•	Х 🗸	<i>f</i> _x 21.4828	6369896				P2		• :	хv	f _x {=MINV	FRSF(MMULT(TRANSPOSE	Δ2:F241).Δ2:	F241\\}
	А	В	С	D	Е	F	G					~ •		LINCHINICLI	11/110/002(/	1211212101	//1
1		Age	Height	Weight	BMI	Wexner		Re		Р	Q	R	S	T	U	V	۱
2	1	51	1.65	58.3	21.41	3.0			1								
3	1	53	1.67	57.3	20.55	3.0			2	135.20	0.00295	-78.6386	0.81692	-2.41329	0.00923		
4	1	55	1.63	69.7	26.23	6.0			3	0.00295	0.00011	-0.00382	1.7E-05	-0.00016	-4.1E-05		
5	1	57	1.66	73.0	26.49	8.0			1	-78 6386	-0.00382	45 0257	-0.48161	1 /1288	-0.00205		
6	1	59	1.68	64.4	22.82	9.0			4	-78.0580	-0.00382	43.9557	-0.46101	1.41200	-0.00505		
7	1	62	1.69	64.6	22.62	8.6			5	0.81692	1./E-05	-0.48161	0.00533	-0.01524	-9.9E-06		-
8	1	60	1.69	67.0	23.46	10.6			6	-2.41329	-0.00016	1.41288	-0.01524	0.04461	-0.00011		
9	1	61	1.67	64.2	23.02	10.0			7	0.00923	-4.1E-05	-0.00305	-9.9E-06	-0.00011	0.00012		
10	1	60	1 67	64.0	າວ ດາ	11 0			0								

Figure 3. the input layer (Age, Height, Weight, BMI, Wexner) and Non-Negative Matrix Factorization (NMF) equations (MINVERSE (MMULT (TRANSPOSE (A2:F241), A2:F241)) in excel sheet.

b) MMULT (*P2:U7, MMULT* (*TRANSPOSE* (*A2:F241*), *H2:N241*))

P2:U7 is for MINVERSE (MMULT (TRANSPOSE (intercept...)) and H2:N241 is for primary output layer (rest anal pressure "H", rectal pressure during coughing "I", anal pressure during coughing "J", maximum pressure during squeezing "K", pressure during squeezing "L", threshold of anorectal inhibitory reflex" M" and defecation index" N" in excel sheet Figure 4).

H	গ ল 🗅 🗋	🖻 🖻 👗 🛍 🕻	È 😡 🔅 🔻 ,	P ₄	. ▼ Software of LR-ML case- 2024					
File	e Home Inser	t Page Layout	Formulas Data	Review View	Help Power Pivot	Q Tell me what	you want to do			
W2	V2 • : × ✓ fx {=MMULT(P2:U7,MMULT(TRANSPOSE(A2:F241),H2:N241))}									
	W	Х	Y	Z	AA	AB	AC			
1	Rest anal press	Rectal Pressure	Anal Pressure d	Maximum Pres	Pressure during	Threshold of Ar	Defecation Index			
2	-31.4023269	78.44501263	121.1494878	175.6439099	75.4065239	-47.6575817	1.85270123			
3	0.620390085	-0.20905304	-0.43334496	-0.5676726	-0.4806919	-0.1187211	-0.00144803			
4	5.521273358	7.581671341	46.27901218	31.93962306	50.04805718	58.45449025	-0.10701798			
5	0.396261387	-0.31550765	-1.13719349	-1.00156421	-0.9630856	-0.92019077	-0.0031337			
6	0.187903863	0.454375667	1.826318442	1.639889998	2.273450118	2.170557149	0.001878837			
7	2.096845946	-1.45438943	-2.84183032	-4.30570681	-3.76122995	-0.89541793	-0.04891787			

Figure 4. The hidden layer measured via MMULT (P2:U7, MMULT (TRANSPOSE (A2:F241), H2:N241))

c) MMULT (\$A\$2: \$F\$241, W2:W7 ...AC7)

W2:W7 is multiple regression values (Hidden layer) for detection and predict the output layers depended to number of them (w, x, y, z, aa, ab, ac). This equation can predict all of output layer at AE - AK columns in excel sheet (Figure 5).

H	্ ক ্ ্ 🗅 🖻 🛙	a X 6 6 6 8	~▼,, ∓	Software of LR-ML	240 case- 2024 .xlsx - Ex	cel	
File	e Home Insert I	Page Layout Formulas	Data Review View	Help Power Pivot	${ar Q}$ Tell me what you want	t to do	
AE2	•	$\times \checkmark f_x$ {=(N	IMULT(\$A\$2:\$F\$241,W2:W	(7))}			
	AE	AF	AG	AH	AI	AJ	AK
1	Rest anal pressure	Pressure during cou	Pressure during cou	m Pressure during so	ssure during squeez	l of Anorectal inhibit	Defecation Index
2	42.764	67.266	139.694	163.202	114.723	32.885	1.313
3	43.556	66.920	139.305	162.282	113.751	32.852	1.310
4	56.849	60.508	124.348	143.860	100.493	28.525	1.136
5	63.805	56.484	115.904	132.190	90.919	25.774	1.022
6	63.155	55.808	116.191	129.976	87.127	25.749	0.988
7	64.274	55.684	115.899	129.787	87.044	25.719	1.001
8	68.336	52.818	109.888	121.286	80.082	23.781	0.901
9	66.396	54.014	112.617	124.748	82.557	24.655	0.939
10	69.113	52.351	109.342	119.874	78.315	23.641	0.888

Figure 5. The output layer measured by MMULT (\$A\$2: \$F\$241, W2:W7)) equation for each column AE to AK

Then, from this particular controlled matrix, an algorithm was used to determine the best estimate between inputs and outputs (Figure 6).

Input	Input Layer			Hidden Layer						Output Layer		Result
Age	80		-31.402327	78.445013	121.14949	175.64391	75.406524	-47.65758	1.8527012	Rest anal pressure	109.149	Abnormal
Height	1.75		0.62039009	-0.209053	-0.433345	-0.567673	-0.480692	-0.118721	-0.001448	Rectal Pressure during coughing	30.729	Normal
Weight	78.3		5.52127336	7.5816713	46.279012	31.939623	50.048057	58.45449	-0.107018	Anal Pressure during coughing	67.954	Normal
BMI	25.57		0.39626139	-0.315508	-1.137193	-1.001564	-0.963086	-0.920191	-0.003134	Maximum Pressure during squeezing	59.870	Weakness
Wexner	21.0		0.18790386	0.4543757	1.8263184	1.63989	2.2734501	2.1705571	0.0018788	Pressure during squeezing	31.438	Weakness
Gender	2.0		2.09684595	-1.454389	-2.84183	-4.305707	-3.76123	-0.895418	-0.048918	Threshold of Anorectal inhibitory reflex	9.869	Weakness
			225.10792	-101.9312	-436.3014	-489.8226	-364.5806	-123.215	0.7044106	Defecation Index	0.350	Normal
Logistic F	Regression	n	0.24290179	-0.017075	-0.127536	-0.050362	0.1765633	0.0297533	0.0087955			
Supervis	ed		-112.41786	108.57262	365.1036	426.67882	332.69412	105.44261	0.8365823			
Machine	Learning		1.30604004	-1.431428	-4.485082	-5.500616	-4.711565	-1.578928	-0.0275			
Version 4	02		-4.1869278	4.0207169	12.958157	15.242002	11.097289	3.4996244	0.0217728			
			3.14886818	-2.223545	-4.980803	-7.23647	-5.482552	-0.936512	-0.044065			

Figure 6. The software of logistic regression supervised machine learning (LR-SML).

2 - Software under SPSS environment in the Neural Networks section

In all versions of SPSS software, there is this option (Neural Networks) that by evaluating the number of input layers and initial output, it can give an estimate of the output layer along with the neural network. In this software, based on the Multilayer Perception option and in the Partitions section, by selection 70% training and 30% testing, prediction of output layer will be measured. With this ability we predicted functional constipation for comparison to software of LR-SML under excel sheet. Then the software gave an image of the hidden layers and calculation matrix with multiple regression calculations and finally stored the predicted values in new columns in the input file (Figures 7 and 8).

Eile Edit 1	⊻iew <u>D</u> ata <u>T</u> ransform	Analyze Graphs Utilities	Add-ons y	<u>V</u> indow <u>H</u> elp				,
ا ا 🖌	🐨 ちゃ 🏪 🖬	Reports	• 🗟 🌚	• •				
1 : Groups	1.0	Descriptive Statistics	•					
	Groups RestAn	Tables	• ahina	AnalPressureCoughing	MaxPressureSqueezing	PressureSqueezing	ThereshAnorecInhibitoryReflex	DefecationIndex
1	1	RFM Analysįs	• .0000	219.0000	300.0000	221.0000	50.0000	1.90680
2	1	Compare Means	• 1.0000	216.0000	247.0000	214.0000	50.0000	1.54980
3	1	General Linear Model	• 2.0000	179.0000	236.0000	205.0000	24.6600	1.29030
4	1	Generalized Linear Models	• .0000	163.0000	219.0000	186.0000	20.0000	0.97200
5	1	Mixed Models	• 5.0000	152.0000	174.0000	100.0000	20.0000	0.91900
6	1	<u>C</u> orrelate	• 00000	150.0000	169.0000	99.0000	20.0000	0.86870
7	1	Regression	• 3.0000	145.0000	166.0000	99.0000	20.0000	0.71590
8	1	Loglinear	· 10000	141.0000	166.0000	98.0000	20.0000	0.69120
9	1	Neural Networks	🕨 🏹 Mult	layer Perceptron	149.0000	85.0000	20.0000	0.65690
0 10	1	Classity	• TR Rad	al Basis Function 000	144.0000	83.0000	19.3300	0.53130
11	1	Dimension Reduction	.0000	126.0000	134.0000	72.0000	18.0000	0.42130
12	1	Scale	• 2.0000	124.0000	127.0000	68.0000	15.3300	0.38730
13	1	Nonparametric Tests	• .0000	104.0000	100.0000	35.0000	10.0000	0.26730
14	1	Forecasting	• 9.0000	90.0000	90.0000	35.0000	10.0000	0.26710
15	1	<u>S</u> urvival	• 1.0000	88.0000	72.0000	31.0000	8.0000	0.23520
16	1	Multiple Response	• 2.0000	84.0000	63.0000	20.0000	9.0000	0.17800
17	1	Missing Value Analysis	0.0000	80.0000	62.0000	21.0000	7.0000	0.13460
18	1	Multiple Imputation	• 1.0000	63.0000	58.0000	20.0000	11.0000	0.10360
19	1	Complex Samples	• 0.0000	52.0000	50.0000	18.0000	6.0000	0.06220
20	1	Quality Control	• 00000	32.0000	49.0000	19.0000	5.0000	0.05940
21	1	🖉 ROC Cur <u>v</u> e	2.0000	220.0000	289.0000	241.0000	47.0700	1.59180
22	1	41.0000	90.0000	213.0000	279.0000	229.0000	44.5120	1.59040

Acces	sibility: Inves	stigate				
1 : Age	5	Multilayer Perceptron	,	<		
	Age	Variables. Partitions Architecture Training Output.	Save Export Options Dependent Variables:	ssureCoughing	MaxPressureSqueezing	PressureSqueezing T
1	51.0	Predicted Value for RectalPressureCoughing [MLP_Pr	RectalPressureCoughing	147.0000	183.0000	126.0000
2	53.0	Predicted Value for AnalPressureCoughing [MLP_Pre	AnalPressureCoughing	145.0000	151.0000	122.0000
3	54.0	Predicted Value for MaxPressureSqueezing [MLP_Pr	MaxPressureSqueezing	120.0000	145.0000	117.0000
4	57.0	Predicted Value for PressureSqueezing [MLP_Predict Predicted Value for Theresh & poreclobilitory/Reflex [Factors:	109.0000	134.0000	106.0000
5	59.0	Predicted Value for DefecationIndex [MLP_Predicted		102.0000	106.0000	57.0000
6	60.0	RestAnalPressurePython		101.0000	104.0000	56.0000
7	60.0	RectalPressureCoughingPython		97.0000	102.0000	56.0000
8	61.0	AnalPressureCoughingPython		95.0000	101.0000	56.0000
9	62.0	PressureSqueezingPython		88.0000	91.0000	49.0000
10	64.0	ThereshAnorecInhibitoryReflexPython		87.0000	88.0000	47.0000
11	65.0	P DefecationIndexPython	Covariates:	84.0000	82.0000	41.0000
12	66.0		Age A Heinht	83.0000	78.0000	39.0000
13	67.0		Weight	70.0000	61.0000	20.0000
14	67.0	4	<i>В</i> М	60.0000	55.0000	20.0000
15	68.0		& Wexner	59.0000	44.0000	18.0000
16	74.0			56.0000	39.0000	11.0000
17	75.0	To change the measurement level of a variable, right-click	Rescaling of Covariates:	54.0000	38.0000	12.0000
18	76.0	the variable in the Variables list.	Standardized	42.0000	35.0000	11.0000
19	77.0			35.0000	31.0000	10.0000

Figure 7. The software of SPSS (Neural Networks). The setting step in the SPSS softwares to estimate and predict the output layer based on the input layer and the initial output layer.

Figure 8. The output in the SPSS software along with the neural cells of the hidden layer and the inhibitory or excitatory effect on these neurons from the input layer and their effect on the predicted of output layer.

Results:

As mentioned earlier, there were moderate to good correlations between the initial inputs and outputs, then the appropriate algorithm was written using supervised machine learning methods in the Excel environment. Various criteria have been used and discussed to verify and validate this algorithm. A comparative analysis between the radial basis function network machine learning algorithm and logistic multiple regression in SPSS using labeled data for training and testing was performed (Figure 9).

The mean and standard deviations of two groups (Female -Male) measured (tables 3,4).

Figure 9. The Three stages for design of ML software

	Mean	SD	Maximum	Minimum
Age (year)	65.13	8.21	79.00	49.00
Height (m)	1.72	0.06	1.82	1.51
Weight (Kg)(71.98	7.66	85.10	56.50
BMI (Kg/m2)(24.38	3.61	36.18	17.95
Wexner questionnaire scale	17.24	7.79	30.00	2.00
Rest anal pressure (mm Hg)	87.82	23.36	176.00	43.00
Rectal pressure during coughing (mm Hg)	41.18	13.53	70.00	14.00
Anal pressure during coughing (mm Hg)	86.30	27.61	147.00	21.00
Maximum pressure during squeezing (mm Hg)	87.36	39.53	183.00	12.00
Pressure during squeezing (mm Hg)	51.55	33.96	137.00	1.00
Threshold of anorectal inhibitory reflex (cm3)	16.60	8.85	44.00	0.00
Defecation Index (Ratio)	0.55	0.42	1.70	0.00

 Table 3. Mean (SD, Max, Min) of 240 cases (female)

Table 4. Mean (SD, Max, Min) of 240 cases (male)

	Mean	SD	Maximum	Minimum
Age (year)	65.13	8.20	79.00	49.00
Height (m)	1.74	0.07	1.87	1.51
Weight (Kg)(74.93	8.36	90.00	54.50
BMI (Kg/m2)(24.85	3.60	35.83	16.98
Wexner questionnaire scale	13.96	7.25	30.00	2.00
Rest anal pressure (mm Hg)	82.99	24.27	157.00	38.00
Rectal pressure during coughing (mm Hg)	47.61	17.84	92.00	7.00
Anal pressure during coughing (mm Hg)	107.43	42.58	220.00	18.00
Maximum pressure during squeezing (mm	115.30	62.00	300.00	0.00
Hg)				
Pressure during squeezing (mm Hg)	72.33	52.09	241.00	1.00
Threshold of anorectal inhibitory reflex	17.88	9.73	50.00	0.07
(cm3)				
Defecation Index (Ratio)	0.60	0.44	1.91	0.01

The receiver operating characteristic ROC curve (SPSS, 22) was used to measured (TP, TN, FP, FN) and evaluate the specificity and sensitivity of these two software with real variables from

primary data. The area under the curve was measured by SPSS version 22 for both groups (tables 5-7) (Figures 10 and 11).

	Female		Male	
	LR-SML	SPSS	LR-SML	SPSS
Rest anal pressure (mm Hg)	0.491	0.500	0.799	0.690
Rectal pressure during coughing (mm Hg)	0.820	0.745	0.862	0.874
Anal pressure during coughing (mm Hg)	0.839	0.755	0.860	0.902
Maximum pressure during squeezing (mm	0.867	0.867	0.884	0.922
Hg)				
Pressure during squeezing (mm Hg)	0.882	0.556	0.865	0.861
Threshold of anorectal inhibitory reflex	0.867	0.859	0.880	0.858
(cm ³)				
Defecation Index (Ratio)	0.896	0.881	0.819	0.849

Table 5. The area under curve of two software in both groups.

Two software have good area under curve.

The accuracy percentage was calculated with the following equation (7):

 $Accuracy = \frac{\text{number of correct classification}}{\text{number of total clasification}} x \ 100$

The detection performance of the model was evaluated using two metrics sensitivity and specificity which are indicative of model's ability to correctly reject negative false instances and avoiding false positive detections respectively (8).

The equations of the metrics are:

$$Sensitivity = \frac{TP}{TP + FN}$$
$$Specificity = \frac{TN}{TN + FP}$$

Where the TP (true positive) indicates the number of correct predicted event values, TN (true negative) indicates the number of correct predicted non-event values, FP (false positive) indicates incorrectly predicted event values and FN (false negative) indicates numbers of incorrect predicted non-events values.

	LR-SML	TP	TN	FP	FN	Sensitivity	Specificity	ACC
--	--------	----	----	----	----	-------------	-------------	-----

Rest Anal Pressure	225	4	5	6	0.97	0.40	0.533
Rectal Pressure during Coughing	216	7	8	9	0.96	0.44	0.581
Anal Pressure during Coughing	215	8	7	10	0.96	0.50	0.575
Maximum Pressure during Squeezing	212	5	16	7	0.97	0.23	0.678
Pressure during Squeezing	196	8	26	10	0.95	0.23	0.799
Threshold of Anorectal Inhibitory Reflex	190	19	10	21	0.90	0.63	0.502
Defecation reflex	178	16	28	18	0.91	0.36	0.822
SPSS (Nural Network)	ТР	TN	FP	FN	Sensitivity	Specificity	ACC
Rest Anal Pressure	228	1	8	3	0.99	0.10	0.531
Rectal Pressure during Coughing	226	2	8	4	0.98	0.18	0.573
Anal Pressure during Coughing	223	5	5	7		0.1.7	0 5 67
		5	3	/	0.97	0.45	0.567
Maximum Pressure during Squeezing	215	7	9	9	0.97	0.45	0.567
MaximumPressureduringSqueezingPressure during Squeezing	215 194	7 9	9 26	7 9 11	0.97 0.96 0.95	0.45 0.41 0.25	0.567 0.670 0.785
MaximumPressureduringSqueezing	215 194 192	7 9 15	9 26 16	9 11 17	0.97 0.96 0.95 0.92	0.45 0.41 0.25 0.47	0.567 0.670 0.785 0.671

Table 7. The ROC curve of the two software LR-SML and SPSS, (male).

LR-SML	TP	TN	FP	FN	Sensitivity	Specificity	ACC
Rest Anal Pressure	225	4	5	6	0.97	0.40	0.515
Rectal Pressure during Coughing	208	11	8	13	0.94	0.55	0.562
Anal Pressure during Coughing	213	9	7	11	0.95	0.53	0.563
Maximum Pressure during Squeezing	204	8	18	10	0.95	0.30	0.691
Pressure during Squeezing	199	10	19	12	0.94	0.33	0.790
Threshold of Anorectal Inhibitory Reflex	189	18	13	20	0.90	0.56	0.500
Defecation reflex	204	8	18	10	0.95	0.30	0.820
SPSS (Nural Network)	TP	TN	FP	FN	Sensitivity	Specificity	ACC
SPSS (Nural Network) Rest Anal Pressure	TP 233	TN 0	FP 5	FN 2	Sensitivity 0.99	Specificity 0.00	ACC 0.519
SPSS (Nural Network) Rest Anal Pressure Rectal Pressure during Coughing	TP 233 221	TN 0 2	FP 5 13	FN 2 4	Sensitivity 0.99 0.98	Specificity 0.00 0.13	ACC 0.519 0.562
SPSS (Nural Network)Rest Anal PressureRectal Pressure during CoughingAnal Pressure during Coughing	TP 233 221 222	TN 0 2 2	FP 5 13 12	FN 2 4 4	Sensitivity 0.99 0.98 0.98	Specificity 0.00 0.13 0.13	ACC 0.519 0.562 0.557
SPSS (Nural Network)Rest Anal PressureRectal Pressure during CoughingAnal Pressure during CoughingMaximumPressureduringSqueezing	TP 233 221 222 201	TN 0 2 2 10	FP 5 13 12 17	FN 2 4 4 12	Sensitivity 0.99 0.98 0.98 0.98 0.98	Specificity 0.00 0.13 0.13 0.13	ACC 0.519 0.562 0.557 0.658
SPSS (Nural Network)Rest Anal PressureRectal Pressure during CoughingAnal Pressure during CoughingMaximumPressureSqueezingPressure during Squeezing	TP 233 221 222 201 202	TN 0 2 2 10 11	FP 5 13 12 17 14	FN 2 4 12 13	Sensitivity 0.99 0.98 0.98 0.94	Specificity 0.00 0.13 0.13 0.13 0.36 0.42	ACC 0.519 0.562 0.557 0.658 0.792
SPSS (Nural Network)Rest Anal PressureRectal Pressure during CoughingAnal Pressure during CoughingMaximumPressure duringSqueezingPressure during SqueezingThreshold of Anorectal InhibitoryReflex	TP 233 221 222 201 202 182	TN 0 2 2 10 11 22	FP 5 13 12 17 14 12	FN 2 4 12 13 24	Sensitivity 0.99 0.98 0.98 0.94 0.94 0.88	Specificity 0.00 0.13 0.13 0.13 0.36 0.42 0.63	ACC 0.519 0.562 0.557 0.658 0.792 0.683

As can be seen in tables 6 and 7, both softwares have high true positive with good sensitivity in the two groups, and both softwares have relatively good accuracy (Acc).

Sensitivity and specificity are inversely related, as sensitivity increases, specificity tends to decrease, and vice versa. Highly sensitive tests will lead to positive findings for patients with a disease, whereas highly specific tests will show patients without a finding having no disease.

These results suggest this two software can predict the elderly difficulty in functional constipation.

LR-SML software performed relatively better than SPSS (Neural Network) software.

Figure 11. Comparison of changes in sensitivity and 1-specificity in two software programs for predicting the initial outcome in the *male group*.

LR-SML software performed relatively is similar to SPSS (Neural Network) software.

Discussion

In this study, a machine learning approach was used to create a prediction model. Estimation of functional constipation variables in elderly subjects using age, weight, height, BMI and Wexner questionnaire (with moderate to good correlation between them and outcome measures in functional constipation. These results showed that the LR-SML software is user friendly and simple prediction ability and is consistent with previous studies that used LR-SML for subjects with tinnitus to predict brain waves activities and non-specific back pain to estimate lumbar muscle activity (9,10). The sensitivity criteria show that this model correctly identifies the problems of the elderly in functional constipation. In this study, we had limitations to compare other machine learning software such as random forests and we suggest that it be done for future studies, also our model was very simple and designed for clinicians and medical students.

There are need new revise for external validation by several step input data at other sources (younger and elder subjects) to compare and develop this simple software.

Conclusion

Results of this study suggest that LR-SML may provide relative good clinically relevant, predictions for defining functional constipation of elderly subjects. The writing of this software in excel sheet is very easy than other softwares and in comparison, to SPSS (Neural Network) software may be have need low time to predication and it is not limitation in outcome variables. Further studies are necessary to improve deep learning and for other disability of above population. This study was just on elder subjects with problems in FC and we suggest more research in younger group with and without FC and elder subjects without FC.

Authors contributions

Each author was involved in data analysis and contributed equally to the writing of the manuscript.

Conflict of interest

Authors declare that they have no conflicts of interest

Funding

The study received funding from Tehran university of Medical Sciences

References

- 1. Kolachalama VB, Garg PS. Machine learning and medical education. NPJ digital medicine. 2018 Sep 27;1(1):1-3.
- 2. Wassan JT, Zheng H, Wang H. Role of Deep Learning in Predicting Aging-Related Diseases: A Scoping Review. Cells. 2021 Nov;10(11):2924.
- 3. Grunhut J, Wyatt AT, Marques O. Educating Future Physicians in Artificial Intelligence (AI): An Integrative Review and Proposed Changes. Journal of Medical Education and Curricular Development. 2021 Sep;8:23821205211036836.
- 4. Chen B. From Logistic Regression to Deep Learning: Machine Learning Advances for Credit Card Churn. IJERMCA. 2024;13(2).

5. Ishii H, Kimino K, Aljehani M, Ohe N, Inoue M. An early detection system for dementia using the M2 M/IoT platform. Procedia Computer Science. 2016 Jan 1; 96:1332-40.

6. Ju R, Hu C, Li Q. Early diagnosis of Alzheimer's disease based on resting-state brain networks and deep learning. IEEE/ACM transactions on computational biology and bioinformatics. 2017 Nov 23;16(1):244-57.

7. Rescio G, Leone A, Siciliano P. Supervised machine learning scheme for electromyography-based pre-fall detection system. Expert Syst Appl. 2018;100:95-105.

8. Kutrani H, Eltalhi S, Ashleik N, editors. Predicting factors influencing survival of

breast cancer patients using logistic regression of machine learning. The 7th

International Conference on Engineering & MIS 2021; 2021

- 9. Mohsen S, Sadeghijam M, Talebian S, Pourbakht A. Use of some relevant parameters for primary prediction of brain activity in idiopathic Tinnitus based on a machine learning application. Audiol Neurotol. June 16, 2023;6-11
- 10. Salamat S, Montazeri V, Talebian S. Predicting trunk muscle activity in chronic low back pain: Development of a supervised machine learning model. J Mod Reh.2025;10-11