Review Article

The Effect of Sign Language on the Language Development of Deaf and Hard-of-Hearing Children: A Systematic Review

Farnoush Jarollahi , Tayyebe Fallahnezhad* , Farideh Aslibeigi

Department of Audiology, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran.

Citation Jarollahi F, Fallahnezhad T, Aslibeigi F. The Effect of Sign Language on the Language Development of Deaf and Hard-of-Hearing Children: A Systematic Review. Journal of Modern Rehabilitation. 2025;19(4):346-357.

doj http://dx.doi.org/10.18502/jmr.v19i4.19770

Article info:

Received: 17 Feb 2025 Accepted: 4 May 2025 Available Online: 01 Oct 2025

ABSTRACT

Introduction: To systematically review and evaluate the evidence regarding the effect of sign language on language development in deaf and hard-of-hearing children.

Materials and Methods: A comprehensive search of electronic databases, including PubMed/MEDLINE, Web of Science, Scopus, EMBASE, Google Scholar, and ProQuest, from 1995 to April 2024, with no language restrictions, was conducted. Two authors independently assessed the risk of bias using the Newcastle-Ottawa scale (NOS).

Results: Six studies involving 259 participants found that exposure to sign language benefits language development in deaf children using hearing aids or cochlear implants (CIs). Children exposed to sign language showed similar or even better spoken language skills than those with limited exposure to sign language. Encouraging parents to learn sign language can significantly support deaf children's communication and language development.

Conclusion: Deaf children with CIs benefit most from communication approaches tailored to their needs. Early intervention, parental involvement, and a rich language environment (signed or spoken) are crucial. While sign language exposure shows promise, further research is needed, especially on its long-term effects and use by hearing parents.

Keywords:

Deaf; Hard of hearing; Language development; Sign language; Systematic review

* Corresponding Author:

Tayyebe Fallahnezhad, PhD.

Address: Department of Audiology, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran.

Tel: +98 (919) 1104743

E-mail: Fallahnezhad.t@gmail.com

Introduction

anguage development is a fundamental aspect of human communication and cognitive development, serving as the cornerstone of academic achievement, social interaction, and emotional well-being [1, 2]. The journey of deaf and hard-of-hearing children toward linguistic proficiency often presents unique chal-

2]. The journey of deaf and hard-of-hearing children toward linguistic proficiency often presents unique challenges as they navigate a world predominantly shaped by spoken language. Unfortunately, existing research highlights that one of the main challenges of newborn hearing screening programs is achieving timely language acquisition skills [1].

Historically, two communication approaches have been proposed in intervention programs for language and speech development: (a) the auditory-oral (AO) approach, which emphasizes spoken language and peer interaction with hearing individuals, and (b) the visual approach, which utilizes lipreading, sign language, and fosters deaf culture [2]. Given that over 90% of parents of hearing-impaired children are hearing themselves, rehabilitation specialists and parents often opt for spoken language and the AO approach [3]. However, a crucial question arises: How can a child facing hearing difficulties effectively learn their native language from birth, relying solely on an auditory approach? While modern hearing aid technology and cochlear implant advancements have significantly improved spoken language abilities in children with severe and profound hearing loss [1, 4], these technologies still fail to bridge the gap in language development before the age of one. Additionally, harmful misconceptions persist in society that hearing aids "cure" hearing loss, leading to delayed intervention during these crucial early months [5].

Research demonstrated that sign languages with established grammatical rules are processed in the brain similarly to spoken languages, indicating their potential to complement each other [6, 7]. One study has shown that children's use of signs and gestures does not negatively impact their acquisition of spoken language. Learning and using sign language facilitates the acquisition of spoken language and promotes the development of appropriate thought and reasoning patterns in hearing-impaired children [8]. Therefore, the American Academy of Pediatrics (AAP) has concluded that sign language is a powerful tool for improving communication in young children with hearing impairment [9].

In this context, the significance of providing early exposure to sign language becomes evident as a critical intervention designed to alleviate potential linguistic and developmental disparities experienced by this vulnerable group. Unlike their typically developing peers, deaf and hard-of-hearing children encounter barriers to naturally acquiring language through auditory input. The absence of spoken language access can lead to delays in language acquisition, and subsequent cognitive, social, and emotional challenges [10, 11]. Natural sign language input does not harm and may mitigate the adverse effects of early auditory deprivation on spoken language development [12]. It is also essential for deaf children to develop a strong sense of identity and participate fully in society [13]. Early exposure to sign language is vital for all children, regardless of their hearing status, as it leads to improved language, cognitive, and social-emotional development [14].

Despite the growing recognition of the importance of early exposure to sign language, the field is not without knowledge gaps. It is essential to determine the most effective timing and intensity of early sign language exposure for different populations with hearing impairments; comparative studies are needed to assess the effectiveness of early sign language exposure compared to other communication interventions. Limited research has examined the long-term effects of early sign language exposure on hearing-impaired children's language development. Further research should investigate how cultural and linguistic factors influence the effectiveness of early exposure to sign language and the development of sign languages tailored to specific communities. The findings of a systematic review suggest that early exposure to sign language may positively impact language development; however, further research is needed to confirm this and identify the optimal age and intensity of sign language exposure [15].

In response to these limitations, this systematic review aims to comprehensively synthesize the existing literature on sign language and the impact of early exposure on language development in deaf and hard-of-hearing children, assess potential heterogeneity, and identify its possible causes.

Materials and Methods

The protocol for the present study was registered in the International Prospective Register of Systematic Reviews (PROSPERO) with the identification number CRD42023402357. Two protocol amendments were made. First, considering the extended review timeline, we broadened the literature search to include publications up to April 2024. Second, due to the insufficient information available in the existing literature on the mental health assessment of sign language users, we decided to remove this section from our review.

Search strategy

We employed a systematic and rigorous search strategy to identify relevant studies, ensuring a comprehensive review of the literature. This search was conducted across multiple electronic databases, including PubMed/MEDLINE, Web of Science, Scopus, EMBASE, and Google Scholar, from 1995 to April 2024, with no language restrictions. Non-English papers were translated using Google Translate. Additionally, grey literature, including ProQuest for relevant theses/dissertations, Scopus and Web of Science for conference papers, and reference lists of primary studies, was searched. Hand-searching was performed for the most recent six months of publications from the journal of deaf studies and deaf education and frontiers in psychology (Supplementary 1).

Search terms and keywords

The search strategy was developed using a combination of medical subject headings (MeSH) terms, keywords, expert opinions, and findings from previous primary and secondary studies. The following key terms and their variations were used:

("Sign language" OR "deaf sign language" OR "sign communication" OR "manual communication")

("Language development" OR "language acquisition" OR "language skills" OR "communication development")

("Language test" OR "speech intelligibility") (corrected spacing)

Inclusion and exclusion criteria

Studies were included in this systematic review if they met the following criteria:

Population: Studies involving deaf and hard-of-hearing children (infants, children, or adolescents) aged 0–18 years, with varying degrees of hearing loss, including those with cochlear implants (CIs) or hearing aids who received early auditory intervention before 5 years of age. Both sexes were included.

Intervention/Exposure: Studies that investigated early sign language exposure, defined as exposure to sign language before or during early childhood (before five years of age), and explored its impact on language development.

Comparison/control group: Studies were included if the comparator was another communication method, such as AO, auditory-verbal, or late sign language exposure.

Outcome measures: Studies assessing language development outcomes in deaf and hard-of-hearing children, including receptive and expressive language skills, vocabulary, syntax, and literacy.

Study design: All observational-analytical designs, including cross-sectional, case-control, and prospective and retrospective cohort studies.

Exclusion criteria

Studies were excluded if they

Did not focus on deaf and hard-of-hearing children, Exclusively involved adults, Lacked a clear definition of sign language exposure, Did not investigate the effect of early sign language exposure on language development.

Study selection

The results were saved in Mendeley software, version 1.19.4, and duplicates were removed. One researcher initially screened titles and abstracts based on predefined inclusion and exclusion criteria. Two reviewers independently assessed the full-text articles of potentially eligible studies for final inclusion. Any disagreements between reviewers were resolved through discussion and, if necessary, consultation with a third reviewer.

Data extraction

A standardized data extraction form was developed to collect relevant information from selected studies. The extracted data included information about the study (authors, year, and design), participants (age range and severity of hearing loss), sign language acquisition methods, usage patterns, results, and the most significant findings on language development.

Quality assessment

Two authors independently assessed the quality of the included studies using the Newcastle-Ottawa scale (NOS). Any disagreements between reviewers were resolved through discussion and, if necessary, consultation with a third reviewer.

Figure 1. PRISMA flowchart

Data synthesis

The data synthesis process employed a narrative approach, as meta-analysis was deemed inappropriate due to the expected heterogeneity among the included studies. The results of the studies were combined and grouped by topic to provide a comprehensive picture of the effects of sign language on the language development of hearing-impaired children.

Results

Study selection

Our comprehensive database search identified 4832 potentially relevant articles. After removing duplicates and screening titles/abstracts, we excluded 4650 articles that did not meet the inclusion criteria. The remaining

68 articles underwent full-text review, with six studies ultimately meeting all eligibility criteria for inclusion in this systematic review (Figure 1).

Characteristics of included studies

Table 1 presents the characteristics of the included study.

Study design

All included studies utilized a cohort design, except one cross-sectional study.

Participant characteristics

The six studies collectively involved 259 deaf and hard-of-hearing children aged 5-12 years. The sample sizes ranged from 14 [16] to 97 participants [17].

Table 1. Study characteristics

Author, Year	Study Design	No.	Age Range (y)	CI Age (y)	Inter- vention Groups	Com- parison Groups	Speech Perception Measures	Language Development Mea- sures
Delcenserie et al. 2024 [18]	Cross-sectional	40	5-7	2.5-5	Typically develop- ing hear- ing	Typically devel- oping hearing	-	Expressive one-word picture vocabulary test Échelle de Vocabulaire en image Peabody Clinical evaluation of language fundamentals (French-Canadian)
Geers et al. 2017 [17]	Retrospective cohort	97	-	3	Short- term signLong- term sign	No sign	Speech recognition index in quiet Early speech perception test Pediatric speech intelligibility test Lexical neighborhood test PBK word lists HINT-C	Comprehensive assessment of spoken language (core composite)
Marshall et al. 2015 [21]	Cross-sectional	27	6-11	-	 Native signers (from birth) Non- native signers (>2 years) 	Normal hearing peers	-	EOWPVT BSL narrative production test Language proficiency profile-2
Yanbay et al. 2014 [20]	Retrospec- tive cohort	42	6-12	<4	Sign + spoken language	• AO • Auditory- verbal	-	• PPVT • PLS scale
Dettman et al. 2013 [22]	Retrospec- tive cohort	39	5	-	Bilingual- bicultural	• Aural- oral • Auditory- verbal	-	PPVTCNC word testBKB sentences
Hassanza- deh, 2012 [16]	Retrospec- tive cohort	14	8	1.5-5	Deaf parents (signers)	Hearing parents (non-signers)	Persian auditory perception test	Sentence imitation test

Abbreviations: PPVT: Peabody picture vocabulary test; BKB: Bamford-Kowal-Bench; CNC: Consonant-nucleus-consonant; BSL: British sign language; EOWPVT: Expressive one-word picture vocabulary test; CIs: Cochlear implants.

Language and speech outcomes

This review examines the impact of sign language exposure on the language development of deaf children with CIs. The included studies measured either spoken language skills or broader language development outcomes.

Studies demonstrating benefits of sign language

Delcenserie et al. administered a combination of assessments, including the French adaptation of the expressive one-word picture vocabulary test (EOWPVT) and the Échelle de Vocabulaire en Image Peabody, revealing no significant difference in spoken language abilities be-

tween deaf children with CIs exposed to sign language (including brief post-implantation exposure) and typically-hearing children [18]. Hassanzadeh employed the Persian auditory perception test for the hearing impaired, speech intelligibility rating scale, and sentence imitation test, demonstrating that second-generation deaf children (with native sign language exposure) outperformed those with hearing parents in cochlear implant outcomes [16]. These findings indicate that early exposure to sign language may facilitate the development of spoken language after implantation.

Studies reporting mixed results

Geers et al. evaluated speech perception using the speech recognition index in quiet and assessed speech intelligibility through adult transcriptions of recorded sentences. The administration of the comprehensive assessment of spoken language and Woodcock-Johnson III tests of achievement revealed comparatively poorer speech outcomes in children with CIs exposed to sign language [17]. However, Hall et al. noted methodological limitations [19].

Studies with neutral findings

Yanbay et al. measured language development using post-implant standardized scores for receptive vocabulary, auditory comprehension, and expressive communication. Assessment tools, including the Peabody picture vocabulary test (PPVT) and the preschool language scale (PLS), showed comparable outcomes across three communication approaches: Spoken language, sign language, and auditory-verbal (AV) therapy [20], suggesting comparable effectiveness among these interventions.

Studies demonstrating no adverse effects of sign language exposure

Marshall et al. assessed speech perception and language skills using the EOWPVT and language proficiency profile-2, supplemented by British sign language (BSL) narrative tasks. While deaf children using sign-supported English or spoken English with BSL showed lower spoken language scores than native signers and hearing peers, they demonstrated superior performance on sign language tasks [21]. Dettman et al. examined speech perception (early speech perception test) and receptive vocabulary PPVT, finding that while auditory-focused programs (AV and AO) showed better outcomes than bimodal-bilingual (BB) approaches, communication mode ceased to be significant when controlling for covariates [22].

Importance of sign language

The weight of evidence suggests that exposure to sign language benefits deaf children with CIs in spoken language measures. Studies by Delcenserie et al. [18] and Hassanzadeh [16] further highlighted the potential advantages of CIs [16, 18]. Although Geers et al. [17] reported associations with poorer speech outcomes, the limitations of their design require consideration. Marshall et al. [21] and Dettman et al. [22] demonstrated no adverse effects of sign language exposure on spoken language development [21, 22]. Notably, Marshall et al. found that deaf children who preferred sign language excelled in sign language tasks [21]. Yanbay

et al.'s [20] study adds another layer by showing no significant differences in language development across various communication programs, suggesting that all approaches can be effective [20].

Overall, these studies underscore the importance of sign language for deaf children. Sign language is a natural and effective communication tool, especially for deaf children, that supports language development, even with non-native exposure from hearing parents, as suggested by Hassanzadeh [16]. These results challenge policies that discourage the use of sign language by deaf children. Encouraging and supporting parents in learning sign language and providing resources for access to native speakers can significantly benefit deaf children.

Evidence indicates that exposure to sign language is beneficial for deaf children with CIs in terms of spoken language outcomes. Delcenserie et al. [18] and Hassanzadeh [16] highlighted the potential advantages of cochlear implant performance [16, 18]. Although Geers et al. reported correlations with poorer speech outcomes, the study's design limitations warrant careful consideration [17]. Studies conducted by Marshall et al. [21] and Dettman et al. [22] revealed no adverse effects of sign language exposure on the development of spoken language [21, 22]. Notably, Marshall et al. [21] found that deaf children who preferred sign language excelled in sign language tasks [21]. Furthermore, Yanbay et al.'s [20] research indicates no significant differences in language development across various communication programs, suggesting that all approaches are effective [20].

Overall, these studies emphasize the importance of sign language for deaf children. It serves as a natural and effective communication tool that fosters language development, even when exposure comes from hearing parents who are not native sign language users, as highlighted by Hassanzadeh [16]. These findings challenge policies that discourage the use of sign language by deaf children. Supporting and encouraging parents to learn sign language, along with providing access to resources and native speakers, can greatly enhance deaf children's development.

Quality assessment

The methodological quality of the included studies was assessed using NOS. This tool evaluates three key domains, including selection of study groups, comparability of groups, and ascertainment of exposure (for cohort studies) or outcomes (for cross-sectional studies). All six studies included in this review achieved high-quality ratings based on their NOS scores (Tables 2 and 3).

Table 2. Quality assessment of cohort study using NOS

Author, Year	Representativeness of the Exposed Cohort	Selection of the Non- exposed Cohort	Ascertainment of Exposure	Outcome of Interest Was Not Present at Start	Comparability of Cohorts Based on the Design or Analysis	Assessment of Outcome	Was Follow-up Long Enough for Outcomes to Occur	Adequacy of Follow-up of Cohorts	Total Score	Overall Rating
Geers et al. 2017 [17]	1	1	1	1	1	1	1	1	8	High quality
Yanbay et al. 2014 [20]	1	1	1	1	1	1	1	1	8	High quality
Dettman et al. 2012 [22]	1	1	1	1	1	1	1	1	8	High quality
Hassanza- deh, 2012 [16]	1	1	1	1	0	1	1	1	7	Mod- erate- quality

JMR

Discussion

This systematic review examined the effects of sign language exposure on language development in deaf and hard-of-hearing children by analyzing six studies that included 259 participants. The findings demonstrate that outcomes are mediated by multiple interacting factors, including the nature and extent of sign language exposure (particularly differences between native and non-native exposure and duration of use), child-specific characteristics such as age at implantation and degree of hearing loss, the structure and quality of educational interventions, and the level of family engagement in the language learning process. These results corroborate the existing literature, documenting variable impacts of sign language exposure, contrasting with studies that report more uniform outcomes. The observed variability across studies likely stems from fundamental differences in research methodologies, including heterogeneity in study designs and participant populations, inconsistent application of assessment tools, and inherent challenges in quantifying sign language exposure and its developmental consequences.

Communication approaches for children with CIs

CIs offer an encouraging technology for deaf children, providing access to sound and supporting the potential development of spoken language skills. However, determining the most effective communication approach to optimize these benefits remains an area of active research and debate. This discussion examines key findings and controversies regarding communication strategies for deaf children using CIs.

Table 3. Quality assessment of cross-sectional study using the NOS

Author, Year	Representa- tiveness	Sam- ple Size	Non- Respon- dents	Exposure Ascertain- ment	Compara- bility	Outcome Assess- ment	Statisti- cal Test	Total Score	Rating
Delcenserie et al. 2024 [18]	1	1	1	2	1	2	1	9	High quality
Marshall et al. 2015 [21]	1	1	0	2	1	2	1	8	High quality

Early intervention is paramount

Research has consistently demonstrated the critical importance of early intervention in language development in deaf children, irrespective of the chosen communication modality [22, 23]. Timing plays a crucial role, as delayed intervention may compromise language acquisition outcomes in both spoken and signed language development.

Sign language exposure: Benefits and considerations

Research has demonstrated that sign language exposure, particularly from deaf parents, correlates with improved language outcomes in deaf children with CIs [16, 24-27]. Key benefits of early sign language exposure include establishing a complete language system before implantation that may facilitate subsequent spoken language development [18], enhancing visual-spatial processing to complement auditory input from CIs [16], and enabling deaf parents to provide linguistically rich input through natural signing [16, 27]. The quality of exposure proves critical, with studies indicating that native-signing deaf parents create more optimal language environments than hearing parents who acquire sign language [27]. While these findings are promising, additional research is needed to examine the long-term outcomes of children with hearing parents [17].

Current evidence suggests sign language exposure does not impede spoken language development in children with CIs. Neuroimaging studies have revealed that increased visual cortex activation from signing shows no negative association with speech outcomes [28–31], supporting the principle that early access to language, regardless of modality, is paramount. Bilingual approaches combining sign and spoken language have no detrimental effects on oral language acquisition [32]. Additionally, hearing parents can achieve sign language proficiency with proper support [33, 34]. Emerging evidence indicates sign language may positively influence spoken language development through cross-modal transfer or by preventing early language deprivation [35-41]. However, further investigation is warranted regarding the use of sign language by hearing parents of infants and toddlers.

Communication approaches: Beyond a single best method

Studies have indicated that multiple communication approaches, including AV, AO, and BB methods, can yield successful outcomes with CIs [22]. While AV and AO approaches, focusing exclusively on spoken lan-

guage, show efficacy, research suggests that implantation age may be a stronger predictor of outcomes than the selection of communication method [22]. The BB approach, integrating sign language with spoken input, shows promise but requires further extensive study, particularly for children under four years of age [20].

The evidence underscores that optimal communication approaches should be individualized, considering each child's unique needs, family dynamics, and cultural context [20, 22]. Regardless of methodology, ensuring a linguistically rich environment, whether signed, spoken, or combined, remains essential for maximizing developmental outcomes [21].

Conclusion

The evidence confirms there is no universal "best" communication approach for deaf and hard-of-hearing children with CIs. Three key factors are critical for optimal outcomes: Early intervention, active parental involvement, and access to a linguistically rich environment. While existing research demonstrates clear benefits of sign language exposure, further investigation is particularly needed regarding long-term outcomes and implementation by hearing parents. Successful outcomes ultimately depend on a collaborative, individualized approach that carefully considers the child's unique needs, family preferences, cultural background, and current evidence. This approach requires coordinated efforts among parents, audiologists, speechlanguage pathologists, and educators to develop personalized communication plans that support language development and overall well-being.

Ethical Considerations

Compliance with ethical guidelines

There were no ethical considerations to be considered in this research.

Funding

This research did not receive any grant from funding agencies in the public, commercial, or non-profit sectors.

Authors' contributions

Conceptualization, study design, investigation, data extraction, and writing the original draft: Tayyebe Fallahnezhad; Risk of bias assessment and data interpretation: Farideh Aslibeigi; Review and editing: Farnoush Jarollahi and Farideh Aslibeigi; Final approval: All authors.

Conflict of interest

The authors declared no conflict of interest.

References

- [1] Ching TY, Dillon H, Marnane V, Hou S, Day J, Seeto M, et al. Outcomes of early- and late-identified children at 3 years of age: Findings from a prospective population-based study. Ear and Hearing. 2013; 34(5):535-52. [DOI:10.1097/AUD.0b013e3182857718] [PMID]
- [2] Spencer PE, Marschark M. Spoken language development of deaf and hard-of-hearing children: Historical and theoretical perspectives. In: Spencer PE, Marschark M, editor. Advances in the spoken language development of deaf and hard-ofhearing children. Oxford: Oxford University Press; 2005. [DOI:10.1093/acprof:oso/9780195179873.003.0001]
- [3] Mitchell RE, Karchmer MA. Chasing the mythical ten percent: Parental hearing status of deaf and hard of hearing students in the United States. Sign Language Studies. 2004; 4(2):138-63. [DOI:10.1353/sls.2004.0005]
- [4] Geers AE, Strube MJ, Tobey EA, Pisoni DB, Moog JS. Epilogue: Factors contributing to long-term outcomes of cochlear implantation in early childhood. Ear and Hearing. 2011; 32(1 Suppl):84S-92S. [DOI:10.1097/AUD.0b013e3181ffd5b5] [PMID]
- [5] Fitzpatrick EM, Stevens A, Garritty C, Moher D. The effects of sign language on spoken language acquisition in children with hearing loss: A systematic review protocol. Systematic Reviews. 2013; 2:108. [DOI:10.1186/2046-4053-2-108] [PMID]
- [6] Petitto LA, Katerelos M, Levy BG, Gauna K, Tétreault K, Ferraro V. Bilingual signed and spoken language acquisition from birth: Implications for the mechanisms underlying early bilingual language acquisition. Journal of Child Language. 2001; 28(2):453-96. [DOI:10.1017/S0305000901004718] [PMID]
- [7] Petitto LA, Zatorre RJ, Gauna K, Nikelski EJ, Dostie D, Evans AC. Speech-like cerebral activity in profoundly deaf people processing signed languages: Implications for the neural basis of human language. Proceedings of the National Academy of Sciences of the United States of America. 2000; 97(25):13961-6. [DOI:10.1073/pnas.97.25.13961] [PMID]
- [8] Johnston JC, Durieux-Smith A, Bloom K. Teaching gestural signs to infants to advance child development: A review of the evidence. First Language. 2005; 25(2):235-51. [DOI:10.1177/0142723705050340]
- [9] Jana LA, Shu J. Heading home with your newborn. Itasca: American Academy of Pediatrics; 2005. [Link]
- [10] Shojaei E, Jafari Z, Gholami M. Effect of early intervention on language development in hearing-impaired children. Iranian Journal of Otorhinolaryngology. 2016; 28(84):13-21. [PMID]
- [11] Nicholas JG, Geers AE. Will they catch up? The role of age at cochlear implantation in the spoken language development of children with severe to profound hearing loss. Journal of Speech, Language, and Hearing Research. 2007; 50(4):1048-62. [DOI:10.1044/1092-4388(2007/073)] [PMID]

- [12] Davidson K, Lillo-Martin D, Chen Pichler D. Spoken english language development among native signing children with cochlear implants. Journal of Deaf Studies and Deaf Education. 2014; 19(2):238-50. [DOI:10.1093/deafed/ent045] [PMID]
- [13] Trovato S. A stronger reason for the right to sign languages. Sign Language Studies. 2013; 13(3):401-22. [DOI:10.1353/sls.2013.0006]
- [14] Hall ML, Hall WC, Caselli NK. Deaf children need language, not (just) speech. First Language. 2019; 39(4):367-95. [DOI:10.1177/0142723719834102]
- [15] Fitzpatrick EM, Hamel C, Stevens A, Pratt M, Moher D, Doucet SP, et al. Sign language and spoken language for children with hearing loss: A systematic review. Pediatrics. 2016; 137(1):e20151974. [DOI:10.1542/peds.2015-1974] [PMID]
- [16] Hassanzadeh S. Outcomes of cochlear implantation in deaf children of deaf parents: Comparative study. The Journal of Laryngology and Otology. 2012; 126(10):989-94. [DOI:10.1017/S0022215112001909] [PMID]
- [17] Geers AE, Mitchell CM, Warner-Czyz A, Wang NY, Eisenberg LS; CDaCI investigative team. Early sign language exposure and cochlear implantation benefits. Pediatrics. 2017; 140(1):e20163489. [DOI:10.1542/peds.2016-3489] [PMID]
- [18] Delcenserie A, Genesee F, Champoux F. Exposure to sign language prior and after cochlear implantation increases language and cognitive skills in deaf children. Developmental Science. 2024; 27(4):e13481. [DOI:10.1111/desc.13481] [PMID]
- [19] Hall ML, Hall WC, Caselli NK. Deaf children need language, not (just) speech. First Language. 2019; 39(4):367-95. [DOI:10.1177/0142723719834102]
- [20] Yanbay E, Hickson L, Scarinci N, Constantinescu G, Dett-man SJ. Language outcomes for children with cochlear implants enrolled in different communication programs. Cochlear Implants International. 2014; 15(3):121-35. [DOI:10.1179/1754762813Y.0000000062] [PMID]
- [21] Marshall C, Jones A, Denmark T, Mason K, Atkinson J, Botting N, et al. Deaf children's non-verbal working memory is impacted by their language experience. Frontiers in Psychology. 2015; 6:527. [DOI:10.3389/fpsyg.2015.00527]
- [22] Dettman S, Wall E, Constantinescu G, Dowell R. Communication outcomes for groups of children using cochlear implants enrolled in auditory-verbal, aural-oral, and bilingual-bicultural early intervention programs. Otology & Neurotology. 2013; 34(3):451-9. [DOI:10.1097/MAO.0b013e3182839650] [PMID]
- [23] Lyness CR, Woll B, Campbell R, Cardin V. How does visual language affect crossmodal plasticity and cochlear implant success? Neuroscience and Biobehavioral Reviews. 2013; 37(10 Pt 2):2621-30. [DOI:10.1016/j.neubiorev.2013.08.011] [PMID]
- [24] Bergeson TR, Pisoni DB, Davis RA. Development of audiovisual comprehension skills in prelingually deaf children with cochlear implants. Ear and Hearing. 2005; 26(2):149-64. [DOI:10.1097/00003446-200504000-00004] [PMID]
- [25] Markman TM, Quittner AL, Eisenberg LS, Tobey EA, Thal D, Niparko JK, et al. Language development after cochlear implantation: An epigenetic model. Journal of Neurodevelopmental Disorders. 2011; 3(4):388-404. [DOI:10.1007/s11689-011-9098-z] [PMID]

- [26] Giraud AL, Price CJ, Graham JM, Truy E, Frackowiak RS. Cross-modal plasticity underpins language recovery after cochlear implantation. Neuron. 2001; 30(3):657-63. [DOI:10.1016/S0896-6273(01)00318-X] [PMID]
- [27] Lu J, Jones A, Morgan G. The impact of input quality on early sign development in native and non-native language learners. Journal of Child Language. 2016; 43(3):537-52. [DOI:10.1017/S0305000915000835] [PMID]
- [28] Mushtaq F, Wiggins IM, Kitterick PT, Anderson CA, Hartley DEH. The benefit of cross-modal reorganization on speech perception in pediatric cochlear implant recipients revealed using functional near-infrared spectroscopy. Frontiers in Human Neuroscience. 2020; 14:308. [DOI:10.3389/ fnhum.2020.00308] [PMID]
- [29] MacSweeney M, Woll B, Campbell R, McGuire PK, David AS, Williams SC, et al. Neural systems underlying British Sign Language and audio-visual English processing in native users. Brain. 2002; 125(Pt 7):1583-93. [DOI:10.1093/brain/ awf153] [PMID]
- [30] Finney EM, Fine I, Dobkins KR. Visual stimuli activate auditory cortex in the deaf. Nature Neuroscience. 2001; 4(12):1171-3. [DOI:10.1038/nn763] [PMID]
- [31] Fine I, Finney EM, Boynton GM, Dobkins KR. Comparing the effects of auditory deprivation and sign language within the auditory and visual cortex. Journal of Cognitive Neuroscience. 2005; 17(10):1621-37. [DOI:10.1162/089892905774597173] [PMID]
- [32] Bauer E, Sánchez L, Wang Y, Vaughan A. A transdisciplinary lens for bilingual education. New York: Routledge; 2021.
 [DOI:10.4324/9781003152194]
- [33] Lieberman AM, Mitchiner J, Pontecorvo E. Hearing parents learning American sign language with their deaf children: A mixed-methods survey. Applied Linguistics Review. 2022; 15(1):309-333. [DOI:10.1515/applirev-2021-0120] [PMID]
- [34] Caselli N, Pyers J, Lieberman AM. Deaf children of hearing parents have age-level vocabulary growth when exposed to American sign language by 6 months of age. The Journal of Pediatrics. 2021; 232:229-6. [DOI:10.1016/j.jpeds.2021.01.029] [PMID]
- [35] Prinz PM, Strong M. ASL Proficiency and english literacy within a bilingual deaf education model of instruction. Topics in Language Disorders. 1998; 18(4):47-60. [DOI:10.1097/00011363-199808000-00006]
- [36] Scott JA, Hoffmeister RJ. Superordinate precision: An examination of academic writing among bilingual deaf and hard of hearing students. Journal of Deaf Studies and Deaf Education. 2018; 23(2):173-82. [DOI:10.1093/deafed/enx052] [PMID]
- [37] Knoors H, Marschark M. Language planning for the 21st century: Revisiting bilingual language policy for deaf children. Journal of Deaf Studies and Deaf Education. 2012; 17(3):291-305. [DOI:10.1093/deafed/ens018] [PMID]
- [38] Mayer C, Wells G. Can the linguistic interdependence theory support a bilingual-bicultural model of literacy education for deaf students? Journal of Deaf Studies and Deaf Education. 1996; 1(2):93-107. [DOI:10.1093/oxfordjournals.deafed. a014290] [PMID]

- [39] Hoffmeister R, Henner J, Caldwell-Harris C, Novogrodsky R. Deaf children's ASL vocabulary and ASL syntax knowledge supports English knowledge. Journal of Deaf Studies and Deaf Education. 2021; 27(1):37-47. [DOI:10.1093/deafed/enab032] [PMID]
- [40] WOLL B. The consequences of very late exposure to BSL as an L1. Bilingualism. 2018; 21(5):936-7. [DOI:10.1017/S1366728918000238]
- [41] Park GY, Moon IJ, Kim EY, Chung EW, Cho YS, Chung WH, et al. Auditory and speech performance in deaf children with deaf parents after cochlear implant. Otology & Neurotology. 2013; 34(2):233-8. [DOI:10.1097/MAO.0b013e31827b4d26] [PMID]

Supplementary 1:

Search Strategy

bMed

(Language [all] AND sign [all]) OR "sign language" [all] OR (communication [all] AND manual [all]) OR "manual communication" [all] OR "American sign language" [all] OR "ASL" [all] OR "communication mode" [all] OR "manual communication*" [all] OR (communication* [all] AND manual [all]) OR "oral-aural communication" [all] OR "total communication method* [all] OR ("communication method" [all] AND total [all]) OR (method* [all] AND "total communication" [all]) OR "auditory verbal training" [all] OR "auditory verbal" [all] OR "bilingual-bicultural education" [all] OR "cued speech" [all] OR (cued [all] AND speech [all]) OR "speech reading" [all] OR ("disabled education" [all] AND hearing [all]) OR "education of persons with hearing impairments" [all]) AND ("language test*" [all] OR "vocabulary test*" [all] OR "language comprehension test" [all] OR "language acquisition" [all] OR (acquisition [all]) AND language[all]) OR ("articulation test" [all] AND speech [all]) OR "speech articulation test" [all] OR (test [all] AND articulation [all]) OR (intelligibility [all] AND speech [all]) OR "speech intelligibility" [all] OR (perception[all] AND speech [all]) OR "spoech language" [all]) OR "spoech language" [all]) OR "spoech [all]

NTRAI

(language:ti AND sign:ti,ab) OR 'sign language':ti OR (communication:ti AND manual:ti,ab) OR 'manual communication':ti OR 'American sign language':ti OR 'ASI':ti OR 'communication mode':ti OR 'manual communication*':ti OR (communication*:ti AND Manual:ti) OR 'oral-aural communication':ti OR 'Total communication':ti OR 'total communication Method*':ti OR ('communication method':ti AND Total:ti) OR (method*:ti AND 'total communication':ti) OR 'auditory verbal training':ti OR 'auditory verbal':ti OR 'bilingual-bicultural education':ti OR 'cued speech':ti OR (Cued:ti AND speech:ti) Or 'speech reading':ti OR ('disabled education':ti AND Hearing:ti) OR 'education of persons with hearing impairments':ti) AND ('language test*':ti OR 'vocabulary test*':ti OR 'language comprehension test':ti OR 'language acquisition':ti OR (acquisition:ti AND language:ti) OR ('articulation test':ti AND speech:ti) OR 'speech articulation test':ti OR (Test:ti AND articulation:ti) OR (intelligibility:ti AND speech:ti) OR 'speech intelligibility':ti OR (perception:ti AND speech:ti) OR 'spoken language':ti)

ABASE

(language:ti,ab AND sign:ti,ab) OR 'sign language' OR (communication:ti,ab AND manual:ti,ab) OR 'manual communication' OR 'American sign language' OR 'ASL' OR 'communication mode' OR 'manual communication* OR (communication* AND manual) OR 'oral-aural communication' OR 'total communication' OR 'total communication method* OR ('communication method' AND total) OR (method* AND 'total communication') OR 'auditory verbal training' OR 'auditory verbal rollingion' OR 'could speech' OR (cued AND speech) OR 'speech reading' OR ('disabled education' AND hearing) OR 'education of persons with hearing impairments') AND ('language test*' OR 'vocabulary test*' OR 'language comprehension test' OR 'language acquisition' OR (acquisition AND language) OR ('articulation test' AND speech) OR 'speech articulation test' OR (Test AND articulation) OR (intelligibility AND speech) OR 'speech intelligibility':ti,ab OR (perception AND speech) OR 'spoken language':ti,ab) AND [1995-2022]/py

guest

(AB,TI [Language] AND AB,TI [sign]) OR AB,TI ("sign language") OR (AB,TI [communication] AND AB,TI [manual]) OR AB,TI ("manual communication") OR AB,TI ("American sign language") OR AB,TI ("ASL") OR AB,TI ("communication mode") OR AB,TI ("manual communication") OR (AB,TI [communication*] AND AB,TI [manual]) OR AB,TI ("Oral-aural communication") OR AB,TI ("total communication method*") OR (AB,TI ["communication method"] AND AB,TI ["total]) OR (AB,TI [method*] AND AB,TI ["total communication"]) OR AB,TI ("auditory verbal training") OR AB,TI ("auditory verbal") OR AB,TI ("bilingual-bicultural education") OR AB,TI ("cued speech") OR (ALL (cued) AND AB,TI [speech]) OR AB,TI ("speech reading") OR (AB,TI ["disabled education"] AND AB,TI [hearing]) OR AB,TI ("language comprehension test") OR AB,TI ("language acquisition") OR (AB,TI [acquisition] AND AB,TI [language]) OR (AB,TI ["articulation test"] AND AB,TI [speech]) OR AB,TI ("speech intelligibility") OR (AB,TI [perception] AND AB,TI [speech]) OR AB,TI ["speech]) OR AB,TI ["speech]) OR AB,TI ["speech]) OR AB,TI ["speech]) OR AB,TI ("speech]) OR AB,TI ("speech]) OR AB,TI [speech]) OR AB,TI [speech]) OR AB,TI ("speech]) OR AB,TI ("speech]) OR AB,TI [speech]) OR AB,TI [speech]) OR AB,TI ("speech]) OR AB,TI ("speech]) OR AB,TI [speech]) OR AB,TI ("speech]) OR AB,TI

SHIDO

(TITLE-ABS [language] AND TITLE-ABS [sign]) OR TITLE-ABS ("sign language") OR (TITLE-ABS [communication] AND TITLE-ABS [manual]) OR TITLE-ABS ("manual communication") OR TITLE-ABS ("American sign language") OR TITLE-ABS ("ASL") OR TITLE-ABS ("communication mode") OR TITLE-ABS ("manual communication*") OR (TITLE-ABS [communication*] AND TITLE-ABS (manual)) OR TITLE-ABS ("oral-aural communication") OR TITLE-ABS ("total communication") OR TITLE-ABS ("total communication") OR (TITLE-ABS ("communication method*") OR (TITLE-ABS [total]) OR (TITLE-ABS [method*] AND TITLE-ABS [total]) OR (TITLE-ABS ("auditory verbal") OR TITLE-ABS ("bilingual-bicultural education") OR TITLE-ABS ("cued speech") OR (ALL [cued] AND TITLE-ABS [speech]) OR TITLE-ABS ("speech reading") OR (TITLE-ABS ("disabled education") AND TITLE-ABS (hearing) OR TITLE-ABS ("education of persons with hearing impairments") AND (TITLE-ABS ("language test*") OR TITLE-ABS ("acquisition) OR (TITLE-ABS ("acquisition) OR (TITLE-ABS ("acquisition) AND TITLE-ABS ("language) OR (TITLE-ABS ("articulation test") AND TITLE-ABS [speech]) OR TITLE-ABS ("speech articulation test") OR (TITLE-ABS [perception] AND TITLE-ABS [speech]) OR TITLE-ABS (speech) OR TITLE-ABS (perception) AND TITLE-ABS (perception) AND TITLE-ABS ("speech intelligibility") OR (TITLE-ABS [perception] AND PUBYEAR > 1994 AND PUBYEAR < 2023

Search Strategy

(TI= [language] AND TI = [sign]) OR TI = ("sign language") OR (TI = (communication) AND TI = (manual)) OR TI = ("manual communication") OR TI = ("American sign language") OR TI = ("ASL") OR TI = ("communication mode") OR TI = ("manual communication") OR (TI = (communication*) AND TI = (manual) OR TI = ("oral-aural communication") OR TI = ("total communication") OR TI = ("auditory cerbal training") OR TI = (total) OR (TI = [method*] AND TI = ["total communication"]) OR TI = ("auditory cerbal training") OR TI = ("auditory verbal") OR TI = ("blingual-bicultural education") OR TI = ("cued speech") OR (TI = [cued] AND TI = [speech]) OR TI = ("speech reading") OR (TI = ("disabled education") AND TI = (hearing)) OR TI = ("education of persons with hearing impairments")) AND (TI = ["language test*"] OR TI = ("speech articulation"]) OR (TI = [acquisition] AND TI = [language]) OR (TI = [articulation test"] AND TI = [speech]) OR TI = ("speech intelligibility") OR (TI = [perception] AND TI = [speech]) OR TI = ("spoken language"]) AND PY= (1995-2022)

