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Abstract 

Background: Recently the adoption of machine learning has significantly increased across 

various applications, including prediction of diseases based on person’s clinical profile. This 

study aimed to develop and evaluate a supervised machine learning to predict trunk muscle’s 

activity in people with chronic low back pain. 

Methods: This was a secondary analysis of data from a subgroup of people with nonspecific 

chronic low back pain. The correlation between labeled data and the output data of muscle 

activity level was measured through surface electromyography. The result showed a good 

correlation, suggesting the potential utility of this approach in distinguishing individuals with low 

back pain from pain-free controls. 

Results: to validate the performance of the developed machine learning, the results were 

compared with SPSS. The model’s predictive performance was further assessed using various 

evaluation methods including area under the receiver operating characteristics curve. The study's 

findings indicate that the model achieved Area Under the Curve (AUC) values ranging from 0.5 



to 0.9 across all muscles and different tasks for people with back pain. In contrast, the pain-free 

group exhibited AUC values between 0.4 and 0.8. 

Conclusion: The findings suggest that the supervised machine learning approach using logistic 

regression may offer clinically meaningful predictions in defining the differences in trunk muscle 

activity between individuals with non-specific chronic low back pain and pain-free controls. 

While the obtained results demonstrate promise, further studies need to enhance the model's 

performance and achieve a more accurate estimation of muscle activity levels. 
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Introduction 

Low back pain (LBP) is a major global health leading to ongoing symptoms, poor quality of life, 

work performance, and social engagement with an average lifetime prevalence of 30% among 

adults(1). While most individuals with low back pain experience spontaneous improvement or 

respond to treatments within a few weeks(2), a subset of people may develop chronic low back 

pain (CLBP) and despite recovery few people still experience recurring episodes of LBP(3). Only 

15% of LBP cases have been identified to have specific underlying causes(4) and in the remaining 

85% the cause is unknown and LBP in non-specific(5). 

One possible physical factor that can contribute to LBP is the alteration in the level of activity of 

trunk muscles during daily functions(6). This variability changes the load distributions on spinal 

structures, leading to continuation and exacerbation of pain. Trunk muscles particularly back 

extensors, play a critical role in various spinal functions and postures. Previous studies indicate 

that surface electromyography can differentiate between individuals with CLBP and those without 

pain(7). It helps to understand muscles’ functions by recording their electrical activity during 

contractions and different tasks. 

Subgrouping of people with non-specific chronic low back pain (NSCLBP) based on common 

features provides a promising approach for tailoring personalized treatments(8). Classification 

systems have shown that people with NSCLBP have different muscle’s activity among subgroups. 

For instance, results of previous studies based on O’Sullivan classification system have shown 

that those with active extension related NSCLBP display higher superficial trunk muscles’ 

activity compared to other sub groups such as Flexion-related or multidirectional back pain(7). 

In the last decade, there has been a significant rise in the adoption of artificial intelligence (AI) 

specially machine learning (ML) technologies, across various applications(9-11).ML promise in 

diagnosis and outcome prediction(12), which is increasingly being utilized for the early prediction 

of several diseases based on the clinical profile of patients. It also seems to play vital role in 

developing healthcare systems that integrate various elements such as science, motivation, data 

science and culture to promote improvement. Practically, by integrating various data sources with 

advanced ML algorithms to generate data-driven insights aimed at improving biomedical 

research, public health, and the quality of healthcare services, these systems can be deployed in 

small clinics as well as major healthcare organizations(12). The growing volume of data in the 

field of medical science now enables more precise and insightful analyses, leading to higher 

diagnosis accuracy(13), pattern detection and treatment. Compared to traditional statistical 

methods, the predictive capabilities of ML methodologies in conjunction with professional 

insights can enhance the accuracy of clinical decision makings and consequently boost treatment 

outcomes. Among different ML methods, multivariate logistic regression (LR) is widely used to 

identify risk factors that predict the development of complications. While ML techniques have 

been successful in classifying conditions like liver disease, heart failure(14, 15), and lung 

diseases(16) their application in low back pain research has been limited. 

To our knowledge no study has examined ML algorithm in a specific sub-groups of people with 

NSCLBP and during different dynamic tasks, therefore, the primary aim of the present study was 



to develop and evaluate the predictive performance of a supervised ML (SML) algorithm to 

distinguish differences between trunk muscle’s activity of a subgroup of people with NSLBP 

(active extension related LBP) and pain-free controls both before and after physiotherapy 

intervention using some clinical data as predictor gathered in some functional tasks. 

 

Methods 

Primary information 

The raw material for this study was the previous EMG data of 5 trunk muscles collected from 120 

people with and without nonspecific chronic low back pain before and after 4-week exercise 

(stabilization vs movement control sexercises) therapy(17). In brief, the study included a sub 

group of people with back pain that met the following criteria: pain associated with lower lumbar 

extension or postures, persistent back pain for more than 3 months, Tampa scale of kinesiophobia 

(TSK) scores< 41, Oswestry Disability Index (ODI) < 13, and STarT Back scores < 4. Those 

excluded from the study were individuals with specific low back pain conditions such as 

fractures, infections, and spondylolisthesis, a history of previous low back pain with radiating 

pain to the legs, and individuals who were currently pregnancy. Pain-free people were excluded if 

they had pain during the last 2 years. The study was approved by the ethics committee of Smart 

Virtual University (ethic number:IR.SMUMS.REC.1402.025) 

The EMG activity of lumbar multifidus (LM), iliocostalis lumborum pars thoracis (ICL), rectus 

abdominis (RA), external oblique (EO), and internal oblique (IO)(7) was evaluated using channel 

Data link electromyography system (Biometrics) at 1 kHz and bandwidth between20-40 Hz, 

common mode rejection ratio>96 at 60 Hz and input impedance>1012 Ω. 

The raw data were full-wave rectified and smoothed with 50 milliseconds and Surface EMG data 

were normalized with 2 submaximal voluntary isometric contractions described elsewhere(18). 

measured tasks were standing with open and closed eyes, sit to stand, flexion relaxation ratio, and 

forward flexion. EMG activity of 10 ms of standing with eyes closed, 15 ms of double lg and 

single leg standing with eyes opened, and the transfer time between sit to stand was analyzed. 

 

Machine learning model: 

The logistic regression supervised machine learning (LR-SML) model was employed to predict 

the EMG changes in the mentioned tasks. 

Due to its interpretability and low computational cost, logistic regression is considered a suitable 

classification algorithm for high dimensional data. It is a statistical method that predicts the 

probability of an outcome based on one or more predictor variables(19). In supervised learning, 

the algorithm is trained on a labeled dataset where the input data and corresponding output are 

known, allowing the algorithm to learn the relationship between the input and output variables. In 

this study, the labeled/input data were ODI scores, pain scores, age, weight, height and BMI. the 

predicted/ output data were 5 trunk muscles’ activity during standing, sit to stand (STS), Forward 

flexion (FF), and flexion relaxation ratio (FRR) functions before and after the intervention. 

Correlation between labeled data (pain and questionnaire scores, age, weight, height, BMI) and 

output data (EMG activity) was evaluated and the results showed a good correlation between 

clinical scores and muscles’ activity (primary output data). 

The labeled data were used to create a training set for model development. During training the 

labeled data were arranged according to their priority and weight. The erroneous data was 

excluded and the machine learning software was trained until the error reached a sufficiently 

minimized state. After establishing a specific controlled matrix, an algorithm to determine the 

best estimate between inputs and outputs was developed. The SML was employed using data 

from 80 people with NSCLBP (stabilization group and movement control group) and 40 pain-free 

controls. 



The accuracy percentage was calculated with the following equation(20): 

 

Accuracy  

 

The detection performance of the model was evaluated using two metrics sensitivity and 

specificity which are indicative of model’s ability to correctly reject negative false instances and 

avoiding false positive detections respectively(21). The equations of the metrics are: 

 

Sensitivity  

Specificity  

 

Where the TP (true positive) indicates the number of correct predicted event values, TN (true 

negative) indicates the number of correct predicted non-event values, FP (false positive) indicates 

incorrectly predicted event values and FN (false negative) indicates numbers of incorrect 

predicted non-events values. 

The model’s classification performance was evaluated using F1score. This metric combines 

precision (sensitivity) and recall (ability of the model to identify true positives) to assess the 

overall classification performance. F1score ranges between 0 and 1, with 1 represents perfect 

classification and 0 indicating no correct classification(22). The equation is: 

 

F1score=  

 

The model's ability to predict outcomes was then evaluated by analyzing the area under the 

receiver operating characteristic curve (AUC-ROC). The AUC value ranges between 0 and 1, and 

serves as a measure of discrimination capability in models, where a higher AUC value signifies 

enhanced discriminatory power(23). 

 

Statistical analysis 

The normality of variable distributions was evaluated using the Shapiro-Wilk test. For correlation 

analysis, Pearson correlation coefficients were used and mean comparisons were conducted using 

the student’s t-test, with a significance level set at p < 0.05.  The statistical analysis was 

performed using SPSS17 (SPSS Inc., Chicago, IL, USA) and excel software. 

 

Results 

Before writing the algorithm the correlation between primary inputs and outputs was calculated 

and the results revealed a moderate to strong correlation between them (Table1),(Table S1). 

 

 

Table 1: correlation between input and primary output layers (muscle activity) for 

supervised machine learning 

 

 Muscle Age Weight BMI Pain 

before 

ODI 

before 

Double leg 

open 

Stabilization 

group 

RA 

IO 

EO 

ML 

-.59⁎⁎ 

-.555⁎⁎ 

-.566** 

-.684** 

-.516** 

-.504** 

-.494** 

-.511** 

-.483** 

-.459** 

-.450** 

-.509** 

-.942** 

-.947** 

-.959** 

-.933** 

-.908** 

-.929** 

-.906** 

-.790** 



 IC -.671** -.527** 

 

-.525** 

 

-.937** 

 

-.821** 

 

 

Double leg 

open 

Movement 

group 

RA 

IO 

EO 

ML 

IC 

-.597** 

-.563** 

-.556** 

-.643** 

-.690** 

 

-.516** 

-.496** 

-.486** 

-0.233 

-.324* 

 

-.483** 

-.439** 

-.260 

-.351* 

-.516** 

 

-.942** 

-.961** 

-.963** 

-.690** 

-.776** 

 

-.908** 

-.905** 

-.905** 

-.282 

-.422** 

 

Double leg 

open 

Pain-free 

group 

RA 

IO 

EO 

ML 

IC 

-.811** 

-.839** 

-.719** 

-.920** 

-.731** 

-.825** 

-.784** 

-.848** 

-.208 

-.156 

 

-.715** 

-.697** 

-.648** 

-.350* 

-.114 

 

  

Transition 

phase open 

Stabilization 

group 

RA 

IO 

EO 

ML 

IC 

-.565** 

-.528** 

-.539** 

-.590** 

-.623** 

-.492** 

-.483** 

-.473** 

-.457** 

-.498** 

-.441** 

-.422** 

-.415** 

-.412** 

-.471** 

-.965** 

-.968** 

-.974** 

-.965** 

-.958** 

-.893** 

-.913** 

-.891** 

-.774** 

-.813** 

Transition 

phase open 

Movement 

group 

RA 

IO 

EO 

ML 

IC 

-.552** 

-.544** 

-.520** 

-.554** 

-.600** 

-.483** 

-.482** 

-.459** 

-.244 

-.313* 

-.426** 

-.428** 

-.393* 

-0.216 

-0.293 

-.971** 

-.972** 

-.981** 

-.794** 

-.843** 

-.888** 

-.894** 

-.884** 

-.395* 

-.488** 

 

Transition 

phase open 

Pain-free 

group 

RA 

IO 

EO 

ML 

IC 

-.739** 

-.858** 

-.791** 

-.862** 

-.650** 

-.831** 

-.754** 

-.772** 

-.332* 

-.335* 

-.644** 

-.671** 

-.617** 

-.311 

-.121 

  

Correlation coefficient (pearson).RAb, rectus abdominis before; RAa, rectus abdominis after; IOb, internal oblique 

before; IOa, internal oblique after; EOb,external oblique before; EOa,external oblique after; MLb, multifidus before; 

MLa, multifidus after; ICb,  iliocostalis before; Ica,  iliocostalis after; FRR,  flexion relaxation ratio; STS, sit to stand; 

BMI, body mass index; ODI, oswestry disability index 

 

Then the algorithm was written using supervised machine learning methods. In the results section, 

different metrics for verification and validation of this algorithm are used and discussed. 

Initially, a comparative analysis was conducted between the Radial Basis Function Network 

machine learning algorithm and logistic multi regression in SPSS using labeled data for training 

and testing (Figure 1). 

 

 

 



 
 

 

Figure 1: input layer (age, weight, height, body mass index, Numeric rating scale, Oswestry 

disability index), hidden layer (equation of logistic multi-regression, NMF), output layer 

(predicted 

 

The results indicated a close correspondence between the actual data from SPSS and the 

predictive outputs generated by the algorithms. Subsequently, to evaluate the predictive 

performance of the algorithm, the receiver operating characteristic (ROC) curve was employed. 

This graphical representation illustrates the trade-off between sensitivity and specificity of a 

diagnostic test at various threshold levels, allowing assessment of the performance of a binary 

classification model without the need to select a specific threshold(24). The ROC curve compares 

the diagnostic ability of a test to random chance, with a diagonal line indicating random guessing 

(Table2). 

 

Table2: AUC_ROC of both software during double leg standing with eye open and closed, 

flexion relaxation ratio, forward flexion, and sit to stand before and after exercise in people 

with AENSLBP and pain-free controls 

 

        

   AUC AUC  AUC AUC 

 LR SPSS LR SPSS 

 
Eyes closed 

transition 

phase 

   
Eyes open 

  

 

transition 

phase 

 

Stabilization 

group 

RAb 0.56 0.51 

Stabilization 

group 

0.55 0.54 

 RAa 0.53 0.52 0.56 0.55 

 IOb 0.57 0.57 0.58 0.57 

 IOa 0.56 0.57 0.57 0.58 

 

EOb 0.53 0.52 0.56 0.54 

 EOa 0.53 0.52 0.49 0.48 

 MLb 0.47 0.47 0.5 0.5 



 MLa 0.46 0.47 0.5 0.5 

 ICb 0.5 0.5 0.49 0.5 

 Ica 0.5 0.5 0.49 0.5 

 

Movement 

group 

RAb 0.53 0.52 

Movement 

group 

0.6 0.6 

 RAa 0.53 0.52 0.6 0.6 

 IOb 0.53 0.52 0.6 0.6 

 IOa 0.54 0.52 0.6 0.6 

 EOb 0.53 0.52 0.6 0.6 

 EOa 0.57 0.57 0.6 0.6 

 MLb 0.56 0.58 0.46 0.5 

 MLa 0.56 0.58 0.52 0.78 

 ICb 0.56 0.58 0.5 0.5 

 ICa 0.56 0.58 0.5 0.5 

 

Pain-free 

group 

RA 0.57 0.56 

Pain-free 

group 

0.65 0.65 

 IO 0.74 0.74 0.53 0.65 

 EO 0.43 0.43 0.5 0.5 

 ML 0.52 0.5 0.65 0.49 

 IC 0.46 0.46 0.71 0.96 
AUC-LR, area under curve- logistic regression; RAb, rectus abdominis before; RAa, rectus abdominis after; IOb, internal oblique 

before; IOa, internal oblique after; EOb,external oblique before; EOa,external oblique after; MLb, multifidus before; MLa, 

multifidus after; ICb,  iliocostalis before; Ica,  iliocostalis after; FRR,  flexion relaxation ratio; STS, sit to stand; FF, forward 

flexion 

 

 

The Area Under the Curve (AUC) is a measure employed to encapsulate the comprehensive 

diagnostic accuracy of a test within binary classification tasks. It ranges from 0 to 1, with 0 

indicating a test that is completely inaccurate and 1 signifying an entirely accurate test . 

For both Sit-to-Stand (STS) and FRR assessments, the Area Under the Curve (AUC) ranged from 

0.4 to 0.9 across all muscles and groups, particularly notable in the healthy group. When 

comparing different standing positions (open vs. closed and one leg vs. double leg), the AUC 

values ranged from 0.5 to 0.88 in the stabilization and movement group. In contrast, the healthy 

group exhibited AUC values ranging between 0.6 to 1, especially during one-leg standing with 

open eyes, indicating that the classifier demonstrated good predictive performance overall and 

remains under clinical relevance in some other tasks (Table S2). 

The average predicted trunk muscles’ activity was assessed and compared with the mean activity 

of the actual primary output in the test session of the LR-SML algorithm (Table3). 

 

 

Table 3: Performance parameters of LRS-ML for predicting trunk muscles activity 

 

 Muscle Sensitivity Specificity Acuracy% F1-

score 

Stabilization 

group 

Double 

leg close 

RAb 

Raa 

Iob 

Ioa 

Eob 

Eoa 

MLb 

0.9 

0.95 

0.93 

0.96 

0.96 

0.93 

0.96 

0.91 

0.92 

0.92 

0.92 

0.92 

0.92 

1 

90 

95 

92 

95 

95 

92 

97 

0.92 

0.96 

0.94 

0.96 

0.96 

0.94 

0.93 



Mla 

ICLb 

ICLa 

1 

09 

0.9 

1 

1 

1 

100 

92 

92 

1 

0.92 

0.93 

Movement 

group 

Double 

leg close 

Rab 

Raa 

Iob 

Ioa 

Eob 

Eoa 

MLb 

Mla 

ICLb 

ICLa 

0.96 

0.96 

0.96 

0.93 

0.96 

0.93 

0.90 

0.90 

1 

0.90 

0.92 

0.92 

0.92 

0.92 

0.92 

0.92 

0.91 

0.90 

0.93 

0.90 

95 

95 

95 

92 

90 

95 

92 

90 

97 

90 

0.96 

0.96 

0.96 

0.94 

0.96 

0.94 

0.93 

0.93 

0.97 

0.93 

Pain-free 

group 

Double 

leg close 

Ra 

Io 

Eo 

ML 

IC 

0.45 

0.5 

0.44 

0.37 

0.45 

0.42 

0.5 

0.4 

0.35 

0.42 

50 

44 

55 

44 

48 

0.6 

0.48 

0.53 

0.34 

0.43 
Rab, rectus abdominis before; Raa,  rectus abdominis after; Iob,  internal oblique before; Ioa,  internal oblique after; 

Eob, external oblique before; Eoa, external oblique after; MLb, multifidus before; Mla, multifidus after; Icb, 

iliocostalis before; Ica,  iliocostalis after; FRR,  flexion relaxation ratio; STS,  sit to stand; FF, forward flexion 

 

The result demonstrated high sensitivity (precision) and accuracy in predicting muscle activity in 

all tasks in three groups and during all tasks (Table S3). 

To construct the predictive algorithm, we first calculated the correlation between pain and 

disability scores, age, weight, height, BMI, and trunk muscles’ activity. This calculation revealed 

a moderate to strong relationship. Then, logistic regression supervised machine learning (LR-

SML) was utilized which is simple and widely used in the medical field. In supervised machine 

learning, which is the most prevalent for training neural networks and decision trees, different 

algorithms are used to establish a function that links inputs (subjective scores) to the desired 

outcomes (SEMG). Concerning this, to confirm the accuracy and validate the model, two distinct 

methodologies on statistical analysis platforms were implemented. Initially, the algorithms within 

SPSS were utilized to replicate the entire set of operations executed by the proposed model. 

Average values and the standard deviations for the absolute prediction errors and the differences 

was calculated. Additionally, the correlation between the predicted outcomes and the primary 

outcomes were assessed. Subsequently, the correlation of the predicted values from SPSS with the 

original dataset, as well as the correlation of predicted values from the LR-SML software with the 

same dataset was constructed and determined. The analysis revealed a strong correlation between 

the two software programs. The findings also suggest that the performance of LR-SML and SPSS 

varied among individuals with LBP, and LR-SML showed a higher error rate across most 

parameters, while in the pain-free group, there was not a significant difference between the two 

software in most tasks (Table 4), (Table S4). 

 

Table 4: mean error of two software: 

 

 Muscle Mean 

difference 

P value  Muscle Mean 

difference 

P value 

Stabilization 

group 

Rab 

Raa 

2.03 

2.82 

0.00 

0.00 

Stabilization 

group 

Rab 

Raa 

2.27 

0.93 

0.00 

0.00 



double leg 

close 

Iob 

Ioa 

Eob 

Eoa 

MLb 

Mla 

Icb 

Ica 

2.25 

0.98 

2 

2.95 

4.86 

3.3 

3.31 

2.85 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

Double leg 

open 

Iob 

Ioa 

Eob 

Eoa 

MLb 

Mla 

Icb 

Ica 

2.18 

1.57 

1.96 

2.92 

1.53 

1.99 

2.99 

2.88 

0.00 

0.001 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

Movement 

group 

Double leg 

close 

Rab 

Raa 

Iob 

Ioa 

Eob 

Eoa 

MLb 

Mla 

Icb 

Ica 

2.63 

3.72 

2.33 

1.1 

2.35 

3.74 

2.21 

1.4 

2.04 

3.24 

.000  

0.00 

000.  

0.00 

0.00 

0.00 

0.04 

0.02 

0.04 

0.00 

Movement 

group 

Double leg 

open 

Rab 

Raa 

Iob 

Ioa 

Eob 

Eoa 

MLb 

Mla 

Icb 

Ica 

1.1 

1.1 

1.7 

0.8 

0.53 

0.6 

2.94 

1.71 

3.22 

2.4 

0.00 

0.04 

0.02 

0.11 

0.18 

0.02 

0.00 

0.00 

0.00 

0.00 

Pain-free 

group 

Double leg 

close 

RA 

IO 

EO 

ML 

IC 

1.17 

1.29 

5.45 

1.43 

2.86 

0.6 

0.06 

0.02 

0.10 

0.10 

Pain-free 

group 

Double leg 

open 

RA 

IO 

EO 

ML 

IC 

-1.4 

-2.39 

-0.74 

-0.28 

-0.36 

0.32 

0.14 

0.36 

0.49 

0.56 
Rab, rectus abdominis before; Raa, rectus abdominis after; Iob, internal oblique before; Ioa, internal oblique after; 

Eob, external oblique before; Eoa, external oblique after; MLb, multifidus before; MLa, multifidus after; ICb, 

iliocostalis before; Ica, iliocostalis after; FRR, flexion relaxation ratio; STS, sit to stand; FF, forward flexion 

 

 

 

F1-score was employed as a statistical measure to evaluate the accuracy of our model. The 

outcomes revealed F1-scores ranging from 0.4 to 1 across all parameters and all groups, 

signifying the mode’s proficiency in accurately classifying true positive cases and actual positive 

cases. 

 

 

Discussion 

In this study, a machine learning approach was employed to create a predictive model for 

estimating the activity level of trunk muscles in individuals with AENSCLB and pain-free groups 

using information from pain and disability scores, age, weight, height and BMI. In the previous 

study (25), the LR-SML was employed for individuals with tinnitus to forecast brainwave 

patterns. The study demonstrated that the model was simple and effective in predicting the 

functional profile of tinnitus using subjective scales and EEG data. In the present study, a similar 

model was applied. 

Sensitivity and specificity metrics indicate how correctly the model identifies positive (true 

positive) and negative (true negative) classes, respectively. In this study, the values of sensitivity 

and specificity were high in testing dataset indicating that LR-SML has a good ability to 

accurately classify instances with a low rate of error. 

Moreover, the results of F1-scores observed for all tasks indicates the model’s well performance 

in accurately predict positive instances while minimizing both false positives and false negatives 



In line with the findings of Kyzet et al. (25), which showed higher accuracy during isometric 

contractions compared to dynamic tasks, our results revealed lower prediction accuracy in more 

challenging tasks such as one-leg standing with closed eyes. This suggests that additional input 

data may be necessary to enhance the performance. Previous research has highlighted that 

predicting pain incidence is challenging because of the intricate interplay between various 

factors(26). 

Similarly, muscles within musculoskeletal system are complex and challenging to model, and the 

static. Thus, Using the model in clinical devices presents a significant challenge(27). The primary 

objective of this study was to provide clinicians with a means of estimating EMG activity without 

an electrode setup. This study aimed to find a method for accurately and efficiently predicting 

muscle activation using a machine learning model. Recently, machine learning models have been 

developed to estimate skeletal muscle activity without explicit modeling of the physical 

characteristics of muscles. However, an inverse muscle model has yet to be developed using a 

machine learning model. The LR-SML model can offer the ability to predict muscle activity via 

subjective information. 

The estimated EMG signals and real data showed that the designed model in some cases had 

slight differences; however, the pattern of the estimated signals was sufficiently similar to allow 

the students and clinicians to avoid EMG electrode setups in the laboratory and use LR-SML 

instead. However, the model is task specific and may require extensive data for a more 

generalized model. 

Notably, most computational techniques for calculating muscle variables have inherent limitations 

in their analytical expressions and suffer from unrealistic assumptions in muscle models. The 

model parameters identified with measurements that are subject to error, such as relative location 

between muscles and electrodes(28), variability in individuals’ biological characteristics, and 

activation pattern of muscles, require a continual optimization loop, and result in estimated 

muscle activations that may not be entirely accurate(29). The complex behaviors of muscles 

during dynamic tasks make them difficult especially for static models. 

Results of the present study revealed that despite the higher error of the LR-SML in LBP group 

compared with SPSS, it stands out for its simplicity and feasibility. Because  an integral part of a 

machine learning algorithm is to be user-friendly and be easily integrated into existing clinical 

procedures(30), the model’s architecture was designed to be robust and stable, even when 

processing large data  despite its accuracy, SPSS showed inconsistency in handling increased data 

volume and complexity. 

The present study has several limitations. First, a specific dataset was used in this study, which 

may increase the risk that the results are population-specific and the prognostic factors may 

decrease generalizability in other populations. Second the model is task-based and it is not certain 

that the model can be used for other tasks. For a general model, a large amount of data is required. 

In addition, homogenous subgroup of people with low back pain limits the generalizability of our 

findings; however, acceptable results during most tasks are promising. 

Therefore, further research is needed to determine the generalizability of our findings to different 

populations and to explore the impact of these conditions on treatment outcomes. 

 

Conclusion 

Results of the present study suggest that LR_SML may provide slight but clinically relevant, 

predictions for  defining trunk muscle activity of people with AENSCLBP and pain- free controls. 

Despite the promising results obtained, further studies are necessary to improve model’s 

performance and have a better estimation of muscle activity level. 
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Supplementary files 

 

Table S1: correlation between input and primary output layers (muscle activity) for 

supervised machine learning 

 

 Muscle Age Weight BMI Pain 

before 

ODI 

before 

 

Double leg 

close 

Stabilization 

group 

 

RA 

IO 

EO 

ML 

IC 

-.591** 

-.562** 

-.566** 

-.684** 

-.562** 

-.671⁎⁎ 

 

-.518** 

-.512** 

-.494** 

-.511** 

-0.517⁎⁎ 

 

-.493** 

-.462** 

-.450** 

-.509** 

-0.525⁎⁎ 

 

-.936** 

-.945** 

-.959** 

-.933** 

-0.927⁎⁎ 

 

-.921** 

-.923** 

-.906** 

-.790** 

-0.821⁎⁎ 

 

Double leg 

close 

Movement 

group 

RA 

IO 

EO 

ML 

IC 

-.597** 

-.574** 

-.569** 

-.654** 

-.645** 

-.516** 

-.503** 

-.496** 

-.532** 

-.530** 

-.483** 

-.464** 

-.453** 

-.527** 

-.531** 

-.942** 

-.955** 

-.957** 

-.941** 

-.942** 

-.908** 

-.906** 

-.907** 

-.842** 

-.844** 

 

Double leg 

close 

Pain-free 

group 

RA 

IO 

EO 

ML 

IC 

-.847** 

-.785** 

-.838** 

-.919** 

-.859** 

-.790** 

-.825** 

-.784** 

-.722** 

-.807** 

-.714** 

-.690** 

-.691** 

-.734** 

-.762** 

 

  

Transition 

phase close 

Stabilization 

group 

RA 

IO 

EO 

ML 

IC 

-.709** 

-.528** 

-.539** 

-.649** 

-.623** 

-.474** 

-.483** 

-.473** 

-.491** 

-.498** 

-.401* 

-.422** 

-.415** 

-.472** 

-.471** 

-.894** 

-.968** 

-.974** 

-.948** 

-.958** 

-.745** 

-.914** 

-.892** 

-.787** 

-.815** 

Transition 

phase close 

Movement 

group 

RA 

IO 

EO 

ML 

IC 

-.568** 

-.549** 

-.544** 

-.615** 

-.606** 

-.495** 

-.484** 

-.477** 

-.507** 

-.518** 

-.445** 

-.430** 

-.421** 

-.480** 

-.492** 

 

-.963** 

-.970** 

-.972** 

-.960** 

-.960** 

 

-.896** 

-.894** 

-.894** 

-.840** 

-.856** 

 

Transition 

phase close 

Pain-free 

group 

RA 

IO 

EO 

ML 

IC 

-.836** 

-.900** 

-.811** 

-.898** 

-.849** 

-.783** 

-.698** 

-.775** 

-.721** 

-.800** 

-.686** 

-.658** 

-.645** 

-.683** 

-.728** 

  

 

one leg open 

Stabilization 

group 

 

RA 

IO 

EO 

ML 

IC 

-.535** 

-.504** 

-.514** 

-.525** 

-.583** 

 

-.471** 

-.463** 

-.455** 

-.418** 

-.472** 

 

-.405** 

-.390* 

-.384* 

-.346* 

-.427** 

 

-.978** 

-.980** 

-.984** 

-.975** 

-.970** 

 

-.877** 

-.897** 

-.875** 

-.755** 

-.802** 

 



 

One leg 

open 

Movement 

group 

RA 

IO 

EO 

ML 

IC 

-.504** 

-.530** 

-.494** 

-.501** 

-.549** 

-.447** 

-.471** 

-.440** 

-.247 

-.305 

-.367* 

-.410** 

-.362* 

-.191 

-.260 

-.987** 

-.978** 

-.988** 

-.837** 

-.871** 

-.859** 

-.886** 

-.867** 

-.448** 

-.518** 

One leg 

open 

Pain-free 

group 

RA 

IO 

EO 

ML 

IC 

-.907** 

-.849** 

-.730** 

-.766** 

-.494** 

-.669** 

-.745** 

-.751** 

-.405** 

-.232 

-.633** 

-.645** 

-.527** 

-.250 

.046 

  

 

one leg close 

Stabilization 

group 

 

RA 

IO 

EO 

ML 

IC 

-.535** 

-.504** 

-.681** 

-.617** 

-.617** 

-.471** 

-.463** 

-.463** 

-.474** 

-.473** 

-.405** 

-.390* 

-.389* 

-.440** 

-.440** 

 

 

-.978** 

-.978** 

-.904** 

-.958** 

-.958** 

-.877** 

-.897** 

-.742** 

-.780** 

-.780** 

one leg close 

Movement 

group 

RA 

IO 

EO 

ML 

IC 

-.541** 

-.526** 

-.517** 

-.582** 

-.567** 

-.475** 

-.467** 

-.457** 

-.485** 

-.489** 

-.412** 

-.401* 

-.387* 

-.441** 

-.442** 

-.976** 

-.980** 

-.983** 

-.972** 

-.975** 

-.882** 

-.880** 

-.877** 

-.829** 

-.845** 

One leg 

close 

Pain-free 

group 

RA 

IO 

EO 

ML 

IC 

-.873** 

-.858** 

-.817** 

-.872** 

-.839** 

 

-.740** 

-.687** 

-.769** 

-.718** 

-.792** 

 

-.674** 

-.582** 

-.640** 

-.637** 

-.696** 

  

STS 

Stabilization 

group 

RA 

IO 

EO 

ML 

IC 

-.597** 

-.557** 

-.548** 

-.056 

-.199 

-.516** 

-.493** 

-.480** 

.355* 

.239 

-.483** 

-.449** 

-.431** 

.350* 

.222 

-.942** 

-.963** 

-.966** 

.100 

-.087 

-.908** 

-.903** 

-.904** 

.580** 

.417** 

STS 

Movement 

group 

RA 

IO 

EO 

ML 

IC 

-.597** 

-.552** 

-.536** 

.543** 

.547** 

-.516** 

-.471** 

-.472** 

.645** 

.660** 

-.483** 

-.434** 

-.419** 

.653** 

.679** 

-.942** 

-.969** 

-.971** 

.760** 

.729** 

-.908** 

-.877** 

-.903** 

.933** 

.918** 

STS 

Pain-free 

group 

RA 

IO 

EO 

ML 

IC 

-.917** 

-.905** 

-.870** 

.669** 

.656** 

 

-.707** 

-.424** 

-0.279 

.952** 

.945** 

 

-.710** 

-.440** 

-.334* 

.871** 

.902** 

 

  

FRR 

Stabilization 

group 

ML 

IC 

-.006 

-.006 

 

.268 

.268 

 

.091 

.091 

 

.784** 

.784** 

 

.932** 

.932** 

 

FRR ML -.008 .273 .093 .786** .932** 



Movement 

group 

IC -.008 

 

0.273 

 

.093 

 

.786** 

 

.932** 

 

FRR 

Pain-free 

group 

 

ML 

IC 

.797** 

-.745** 

 

.885** 

.157 

 

.881** 

0.037 

 

  

Correlation coefficient (pearson).RAb, rectus abdominis before; RAa, rectus abdominis after; IOb, internal oblique 

before; IOa, internal oblique after; EOb,external oblique before; EOa,external oblique after; MLb, multifidus before; 

MLa, multifidus after; ICb,  iliocostalis before; Ica,  iliocostalis after; FRR,  flexion relaxation ratio; STS, sit to stand; 

BMI, body mass index; ODI, oswestry disability index 

 

TableS2: AUC_ROC of both software during double leg standing with eye open and closed, 

flexion relaxation ratio, forward flexion, and sit to stand before and after exercise in people 

with AENSLBP and pain-free controls 

 
 Muscle  AUC 

LR 

AUC 

SPSS 

 AUC 

LR 

AUC 

SPSS 

Eyes closed 

double leg 

   Eyes open 

Double leg 

  

Stabilization 

group 

RAb 

RAa 

IOb 

IOa 

ERb 

EOa 

MLb 

MLa 

ICb 

ICa 

0.55 

0.55 

0.53 

0.53 

0.53 

0.55 

0.51 

0.5 

0.5 

0.5 

0.55 

0.55 

0.52 

0.52 

0.52 

0.55 

0.49 

0.5 

0.5 

0.5 

 

 

 

 

Stabilization 

group 

0.53 

0.53 

0.53 

0.59 

0.53 

0.53 

0.52 

0.5 

0.51 

0.49 

0.52 

0.52 

0.52 

0.58 

0.52 

0.52 

0.5 

0.5 

0.5 

0.5 

Movement 

group 

RAb 

RAa 

IOb 

IOa 

EOb 

EOa 

MLb 

MLa 

ICb 

Ica 

0.47 

0.45 

0.47 

0.47 

0.47 

0.45 

0.47 

0.48 

0.48 

0.47 

0.47 

0.45 

0.48 

0.48 

0.48 

0.45 

0.45 

0.47 

0.47 

0.45 

Movement 

group 

0.66 

0.66 

0.6 

0.6 

0.6 

0.64 

0.48 

0.61 

0.48 

0.55 

0.67 

0.66 

0.61 

0.6 

0.6 

0.64 

0.5 

0.58 

0.51 

0.55 

Pain-free 

group 

RA 

IO 

EO 

ML 

IC 

0.57 

0.74 

0.43 

0.52 

0.46 

0.56 

0.74 

0.43 

0.5 

0.46 

Pain-free 

group 

0.53 

0.42 

0.43 

0.58 

0.53 

0.44 

0.4 

0.54 

 

Cont: 

  AUC 

LR 

AUC 

SPSS 

 AUC 

LR 

AUC 

SPSS 

Eyes closed 

one leg 

   Eyes open 

One leg 

  



Stabilization 

group 

RAb 

RAa 

IOb 

IOa 

EOb 

EOa 

MLb 

MLa 

ICb 

ICa 

0.58 

0.6 

0.62 

0.61 

0.66 

0.62 

0.51 

0.53 

0.5 

0.56 

0.58 

0.6 

0.63 

0.63 

0.68 

0.63 

0.52 

0.55 

0.5 

0.58 

Stabilization 

group 

0.53 

0.59 

0.61 

0.61 

0.58 

0.58 

0.56 

0.6 

0.55 

0.6 

0.52 

0.58 

0.61 

0.6 

0.57 

0.58 

0.58 

0.6 

0.58 

0.61 

Movement 

group 

RAb 

RAa 

IOb 

IOa 

EOb 

EOa 

MLb 

MLa 

ICb 

ICa 

0.6 

0.6 

0.6 

0.56 

0.6 

0.6 

0.56 

0.56 

0.6 

0.6 

 

0.6 

0.6 

0.6 

0.57 

0.6 

0.6 

0.56 

0.56 

0.6 

0.6 

 

Movement 

group 

0.61 

0.61 

0.6 

0.61 

0.6 

0.61 

0.62 

0.66 

0.6 

0.7 

0.62 

0.62 

0.62 

0.62 

0.59 

0.62 

0.63 

0.67 

0.6 

0.7 

 

Pain-free 

group 

RA 

IO 

EO 

ML 

IC 

0.48 

0.44 

0.43 

0.52 

0.42 

0.47 

0.4 

0.4 

0.53 

0.4 

Pain-free 

group 

0.44 

0.5 

0.33 

0.45 

1 

0.52 

0.5 

0.36 

0.41 

0.95 

 

Cont: 

 Muscle  AUC 

LR 

AUC 

SPSS 

 AUC 

LR 

AUC 

SPSS 

STS    FRR   

Stabilization 

group 

RAb 

RAa 

IOb 

IOa 

EOb 

EOa 

MLb 

MLa 

ICb 

ICa 

0.42 

0.4 

0.42 

0.4 

0.42 

0.42 

0.43 

0.92 

0.5 

0.74 

 

0.42 

0.4 

0.42 

0.4 

0.42 

0.42 

0.47 

0.75 

0.53 

0.66 

 

Stabilization 

group 

0.73 

0.5 

0.7 

0.5 

0.3 

0.44 

0.65 

0.5 



Movement 

group 

RAb 

RAa 

IOb 

IOa 

EOb 

EOa 

MLb 

MLa 

ICb 

Ica 

0.58 

0.56 

0.52 

0.56 

0.48 

0.52 

0.88 

0.63 

0.88 

0.6 

0.57 

0.6 

0.57 

0.61 

0.5 

0.58 

0.92 

0.64 

0.92 

0.66 

 

Movement 

group 

0.66 

1 

0.62 

0.62 

0.67 

0.97 

0.64 

0.64 

Pain-free 

group 

RA 

IO 

EO 

ML 

IC 

0.71 

0.6 

0.84 

0.8 

0.9 

0.7 

0.73 

0.9 

0.8 

0.8 

Pain-free 

group 

0.85 

0.6 

0.81 

0.6 

FF       

Stabilization 

group 

 

MLb 

MLa 

ICb 

Ica 

0.57 

0.2 

0.66 

0.84 

 

0.76 

0.58 

0.68 

0.31 

   

Movement 

group 

 

MLb 

MLa 

ICb 

ICa 

0.58 

0.71 

0.5 

0.71 

0.64 

0.65 

0.48 

0.65 

   

Pain-free 

group 

 

ML 

IC 

0.59 

0.71 

0.66 

0.75 

   

AUC-LR, area under curve- logistic regression; RAb, rectus abdominis before; RAa, rectus abdominis after; IOb, 

internal oblique before; IOa, internal oblique after; EOb,external oblique before; EOa,external oblique after; MLb, 

multifidus before; MLa, multifidus after; ICb,  iliocostalis before; Ica,  iliocostalis after; FRR,  flexion relaxation 

ratio; STS, sit to stand; FF, forward flexion 

 

 

Table S3: performance parameters of LRS-ML for predicting trunk muscles activity 

 

 Muscle SENSITIVITY SPECIFICITY ACURACY% F1-

score 

Stabilization 

group 

one leg    

close 

RAb 

RAa 

IOb 

IOa 

EOb 

EOa 

MLb 

MLa 

ICLb 

0.92 

0.93 

0.92 

0.92 

0.92 

0.92 

0.93 

0.96 

0.93 

1 

1 

1 

1 

1 

1 

1 

1 

1 

95 

95 

95 

95 

95 

95 

95 

98 

95 

0.96 

0.96 

0.96 

0.96 

0.96 

0.96 

0.96 

0.98 

0.96 



ICLa 0.93 1 95 0.96 

Movement 

group 

one leg    

close 

RAb 

RAa 

IOb 

IOa 

EOb 

EOa 

MLb 

MLa 

ICLb 

ICLa 

0.93 

0.93 

0.92 

0.93 

0.92 

0.93 

0.92 

0.92 

0.89 

0.93 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

95 

95 

95 

95 

95 

95 

95 

95 

92 

95 

0.96 

0.96 

0.96 

0.96 

0.96 

0.96 

0.96 

0.96 

0.94 

0.96 

Pain-free 

group 

Double leg 

close 

Ra 

Io 

Eo 

ML 

IC 

0.4 

0.41 

0.44 

0.42 

0.46 

0.38 

0.38 

0.4 

0.4 

0.43 

40 

40 

42 

0.55 

0.45 

0.6 

0.41 

0.88 

0.75 

0.5 

Stabilization 

group 

double leg    

open 

RAb 

RAa 

IOb 

IOa 

EOb 

EOa 

MLb 

MLa 

ICLb 

ICLa 

1 

1 

1 

1 

1 

1 

1 

1 

0.94 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

100 

100 

100 

100 

100 

100 

100 

100 

98 

100 

1 

1 

1 

1 

1 

1 

1 

1 

0.97 

1 

movement 

group 

double leg    

open 

RAb 

RAa 

IOb 

IOa 

EOb 

EOa 

MLb 

MLa 

ICLb 

ICLa 

0.96 

0.96 

0.93 

0.93 

0.93 

0.96 

1 

1 

1 

1 

0.92 

1 

0.92 

0.92 

0.92 

0.92 

1 

1 

1 

1 

95 

97 

92 

92 

92 

100 

100 

100 

100 

100 

0.96 

0.97 

0.96 

0.96 

0.96 

0.96 

1 

1 

1 

1 

Pain-free 

group 

double leg    

open 

Ra 

Io 

Eo 

ML 

IC 

0.48 

0.45 

0.52 

0.47 

0.6 

0.46 

0.41 

0.53 

0.45 

0.88 

47 

64 

52 

46 

66 

0.5 

0.45 

0.55 

0.5 

0.6 



Stabilization 

group 

one leg    

open 

RAb 

RAa 

IOb 

IOa 

EOb 

EOa 

MLb 

MLa 

ICLb 

ICLa 

1 

1 

1 

1 

1 

1 

0.84 

1 

0.87 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

100 

100 

100 

100 

100 

100 

9 

100 

93 

100 

1 

1 

1 

1 

1 

1 

0.91 

1 

0.93 

1 

Movement 

group 

one leg    

open 

RAb 

RAa 

IOb 

IOa 

EOb 

EOa 

MLb 

MLa 

ICLb 

ICLa 

0.93 

0.93 

0.92 

0.92 

0.92 

0.93 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

95 

95 

95 

95 

95 

95 

100 

100 

100 

100 

0.96 

0.96 

0.96 

0.96 

0.96 

0.96 

1 

1 

1 

1 

Pain-free 

group 

one leg    

open 

Ra 

Io 

Eo 

ML 

IC 

0.4 

0.45 

0.53 

046 

0.62 

0.38 

0.42 

0.55 

0.44 

0.85 

55 

56 

53 

45 

70 

0.4 

0.46 

0.53 

0.46 

0.61 

 

Stabilization 

group 

FRR 

MLb 

MLa 

ICb 

ICa 

0.97 

1 

1 

0.97 

1 

0.88 

0.88 

1 

98 

98 

98 

98 

0.98 

0.98 

0.98 

0.98 

 

Movement 

group 

FRR 

MLb 

MLa 

ICb 

ICa 

1 

0.98 

1 

1 

0.88 

1 

0.88 

0.88 

98 

98 

98 

98 

0.98 

0.98 

0.99 

0.98 

Pain-free 

group FRR 

ML 

IC 

0.37 

0.45 

0.35 

0.42 

36 

44 

0.4 

0.45 

 

Stabilization 

group 

FF 

MLb 

MLa 

ICb 

ICa 

0.94 

1 

0.94 

1 

1 

1 

1 

1 

95 

100 

95 

100 

0.96 

1 

0.97 

1 

 

Movement 

group 

FF 

MLb 

MLa 

ICb 

ICa 

0.94 

1 

0.94 

1 

1 

1 

1 

1 

95 

100 

95 

100 

0.97 

1 

0.97 

1 

Pain-free 

group FF 

ML 

IC 

0.49 

0.72 

0.49 

0.79 

50 

75 

0.5 

0.71 

 

Stabilization 

group 

STS 

RAb 

RAa 

IOb 

IOa 

0.96 

0.97 

0.97 

0.96 

0.92 

1 

0.93 

1 

95 

97 

97 

97 

0.95 

0.95 

0.95 

0.97 



EOb 

EOa 

MLb 

MLa 

ICLb 

ICLa 

0.93 

0.96 

1 

1 

1 

1 

0.92 

1 

1 

1 

1 

1 

92 

97 

100 

100 

100 

100 

0.93 

0.97 

1 

1 

1 

1 

Movement 

group 

 

STS 

RAb 

RAa 

IOb 

IOa 

EOb 

EOa 

MLb 

MLa 

ICLb 

ICLa 

0.96 

0.96 

0.93 

0.96 

0.93 

0.96 

1 

1 

1 

1 

0.92 

1 

0.92 

1 

0.92 

1 

1 

1 

1 

1 

95 

97 

92 

97 

92 

97 

100 

100 

100 

100 

0.95 

0.97 

0.93 

0.97 

0.93 

0.97 

1 

1 

1 

1 

Pain-free 

group 

STS 

RA 

IO 

EO 

ML 

IC 

0.38 

0.39 

0.43 

0.48 

0.54 

0.37 

0.36 

0.41 

0.47 

0.57 

40 

40 

42 

50 

55 

0.4 

0.38 

0.43 

0.46 

0.54 
RAb, rectus abdominis before; RAa,  rectus abdominis after; IOb,  internal oblique before; IOa,  internal oblique 

after; EOb, external oblique before; EOa, external oblique after; MLb, multifidus before; MLa, multifidus after; ICb, 

iliocostalis before; Ica,  iliocostalis after; FRR,  flexion relaxation ratio; STS,  sit to stand; FF, forward flexion 

 

 

 

Table S4: mean error of two software: 

 

 Muscle  Mean 

difference 

P value  Muscle  Mean 

difference 

P value 

Stabilization 

group 

One leg 

close 

RAb 

RAa 

IOb 

IOa 

EOb 

EOa 

MLb 

MLa 

ICb 

ICa 

1.56 

1 

1.19 

1.25 

1.5 

1.33 

4.08 

3.94 

4.2 

2.19 

0.00 

0.06 

0.04 

0.02 

0.41 

0.03 

0.00 

0.002 

0.00 

0.00 

Stabilization 

group 

One leg 

open 

RAb 

RAa 

IOb 

IOa 

EOb 

EOa 

MLb 

MLa 

ICb 

ICa 

1.54 

0.97 

1.51 

1.42 

1.56 

1.2 

-0.04 

1.64 

1.99 

1.95 

0.00 

0.03 

0.00 

0.11 

0.00 

0.052 

0.92 

0.07 

0.01 

0.01 

Movement 

group 

One leg 

close 

RAb 

RAa 

IOb 

IOa 

EOb 

EOa 

MLb 

MLa 

1.85 

1.3 

1.7 

0.22 

1.41 

2.2 

2 

1.42 

0.004 

0.02 

0.006 

0.43 

0.01 

0.01 

0.014 

0.03 

Movement 

group 

One leg 

open 

RAb 

RAa 

IOb 

IOa 

EOb 

EOa 

MLb 

MLa 

0.32 

0.25 

0.55 

0.58 

-0.14 

0.27 

4.52 

2.06 

0.32 

0.14 

0.47 

0.34 

0.77 

0.49 

0.01 

0.004 

Cont: 



ICb 

ICa 

1.44 

2.03 

0.016 

0.023 

ICb 

ICa 

1.8 

0.97 

0.005 

0.005 

Pain-free 

group 

One leg 

close 

RA 

IO 

EO 

ML 

IC 

2.97 

1.05 

7.08 

2.08 

4.33 

0.06 

0.17 

0.00 

0.15 

0.04 

Pain-free 

group 

One leg 

open 

RA 

IO 

EO 

ML 

IC 

-1.14 

-4.02 

-1.6 

-0.58 

-0.35 

0.04 

0.09 

0.25 

0.64 

0.53 

 

Stabilization 

group 

FRR 

MLb 

MLa 

ICb 

ICa 

-0.09 

-0.02 

-0.07 

-0.02 

0.00 

0.00 

0.00 

0.00 

Pain-free 

group 

FRR 

ML 

IC 

0.01 

0.00 

0.08 

0.59 

 

Movement 

group 

FRR 

MLb 

MLa 

ICb 

ICa 

-0.02 

-0.003 

-0.02 

-0.009 

0.00 

0.82 

0.00 

0.00 

 

Stabilization 

group 

FRR 

MLb 

MLa 

ICb 

ICa 

-0.09 

-0.02 

-0.07 

-0.02 

0.00 

0.00 

0.00 

0.00 

Pain-free 

group 

FRR 

ML 

IC 

0.01 

0.00 

0.08 

0.59 

 

Movement 

group 

FRR 

MLb 

MLa 

ICb 

ICa 

-0.02 

-0.003 

-0.02 

-0.009 

0.00 

0.82 

0.00 

0.00 

 

Stabilization 

group 

FF 

MLb 

MLa 

ICb 

ICa 

-3.71 

1.58 

-1.86 

1.4 

0.008 

0.57 

0.005 

0.61 

 

 

 

Stabilization 

group 

STS 

RAb 

RAa 

IOb 

IOa 

EOb 

EOa 

MLb 

MLa 

ICb 

ICa 

0.95 

0.41 

0.59 

0.21 

0.47 

0.37 

2.5 

1.41 

2.7 

3.5 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

Movement 

group 

FF 

MLb 

MLa 

ICb 

ICa 

3.39 

-0.04 

1.07 

0.07 

0.00 

0.95 

0.02 

0.9 

Movement 

group 

STS 

RAb 

RAa 

IOb 

IOa 

EOb 

EOa 

MLb 

MLa 

ICb 

ICa 

-0.17 

-0.04 

-0.5 

-0.7 

-0.45 

-0.23 

0.3 

1.42 

0.4 

0.36 

0.54 

0.67 

0.00 

0.14 

0.00 

0.26 

0.43 

0.1 

0.38 

0.36 

Pain-free 

group 

FF 

ML 

IC 

2.01 

0.09 

0.14 

0.09 

Pain-free 

group 

STS 

RA 

IO 

EO 

ML 

-0.61 

-0.26 

-1 

0.09 

0.32 

0.45 

0.00 

0.91 



IC 0.04 0.94 

RAb, rectus abdominis before; RAa, rectus abdominis after; IOb, internal oblique before; IOa, internal oblique after; 

EOb, external oblique before; EOa, external oblique after; MLb, multifidus before; MLa, multifidus after; ICb, 

iliocostalis before; Ica, iliocostalis after; FRR, flexion relaxation ratio; STS, sit to 

 


